Effect of Barium-to-Strontium on Leakage Current Mechanism of Sol-Gel BaxSr1-xTiO3 Thin Films

Article Preview

Abstract:

Ferroelectric barium strontium titanate (BaxSr1-xTiO3) thin films with different Ba content have been fabricated as MFM configuration using sol-gel technique. The effect of barium-to-strontium ratio on the leakage current mechanism of BaxSr1-xTiO3 thin films has been investigated. The results show that the leakage current density increases as Ba content increases, which attributed to the grain size effect. The leakage current for the tested films has been studied using log (J) vs log (E) plane, which shows three distinguished linear regions. These regions have been characterized using power law () to find that: the region at low electric fields (E < 20 KV/cm) is controlled by Ohmic conduction and the other two regions (E > 20 KV/cm) are due to space charge limited conduction, which is also confirmed via modified Langmuir-Child law. In addition, it is observed that at high electric fields region (E > 1.29×105 V/m) the films show Schottky emission (SE) and PooleFrenkel (PF) emission mechanisms.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

185-189

Citation:

Online since:

March 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D.R. Patil, S.A. Lokare, R.S. Devan, S.S. Chougule, C.M. Kanamadi, Y.D. Kolekar and B.K. Chougule: Mater. Chem. Phys. Vol. 104 (2007), p.254.

DOI: 10.1016/j.matchemphys.2007.02.027

Google Scholar

[2] S. Wang, L. Zhang, J. Zhai, and F. Chen: J. Ceram. Vol. 2013 (2013), 852867, 6 pages.

Google Scholar

[3] A.A. Saif and P. Poopalan: Solid Stat. Electro. Vol. 62 (2011), p.25.

Google Scholar

[4] T. Mazon, M.A. Zaghete, J.A. Varela and E. Longo: J. Europ. Ceramic. Soc. Vol. 27 (2007), p.3799.

Google Scholar

[5] A.A. Saif, N. Ramli and P. Poopalan: Solid State Sci. Tech. Vol. 19 (2011), p.150.

Google Scholar

[8] S. Li, C. Ghinea, Th. J. M. Bayer, M. Motzko, R. Schafranek and A. Klein: J. Phys.: Condens. Matter. Vol. 23 (2011), p.334202.

DOI: 10.1088/0953-8984/23/33/334202

Google Scholar

[9] A.A. Saif and P. Poopalan: Phys. B Vol. 406 (2011), p.1283.

Google Scholar

[10] A.A. Saif, Z.A.Z. Jamal, Z. Sauli and P. Poopalan: World Acad. Sci. Eng. Tech. Vol. 81(2011), p.14.

Google Scholar

[11] R. Ranjith, W. Prellier, J.W. Cheah, J. Wang and T. Wu: Appl. Phys. Let. 92 (2008), p.232905.

Google Scholar

[12] S.Y. Wang, B.L. Cheng, C. Wang, C. Wang, S.Y. Dai, H.B. Lu, Y.L. Zhou, Z.H. Chen and G.Z. Yang: Appl. Phys. A Vol. 81(2005), p.1265.

Google Scholar

[13] I.S. Baturin, D.S. Chezganov, M.M. Neradovskiy, N.A. Naumova, V. Ya. Shur, Y. Zhang and X. Wang: Ferroelec. Vol. 442 (2013), p.131.

Google Scholar

[14] A.Z. Simoes, M.A. Ramırez, E. Longo and J.A. Varela: Mater. Chem. Phys. Vol. 107 (2008), p.72.

Google Scholar

[15] X. Wu, Sh. Dong, Y. Zhai, M. Xu and Y. Kan: Thin Solid Film. Vol. 519 (2011), p.2376.

Google Scholar

[16] Y. Wang and Y. Wang: J. Phys. D: Appl. Phys. Vol. 42 (2009), p.162001.

Google Scholar

[17] C.C. Yu, M.C. Kao, H.Z. Chen, S.L. Young and C.H. Lin: J. Supercond. Novel Magnet. Vol. 23 (2010), p.929.

Google Scholar