Diamond Microelectrodes for Amperometric Oxygen Sensor

Article Preview

Abstract:

This report Studied and development of diamond microelectrodes for Amperometric oxygen sensor. Boron-doped diamond film was Synthesized on a Si substrate by Hot-Filament CVD with the optimization Condition for film thickness 5 μm. This diamond film has the active area of electrode Control dimensions by technique uses SiO2 be a mask Protecting diamond film formation. Four-point probe in additional and Hall Effect technique were used to measure the resistivity, and to measure carriers concentrations of the respectively. Study electrochemistry characteristics of diamond electrodes using Cyclic Voltammetry method. These B/C 10,000 PPM Boron doped diamond electrodes are used as working electrodes of Amperometric oxygen sensor for various of this gas levels detection. These electrodes are packaged with 0.1M KCl solution. The experiment show that current density of the diamond microelectrodes with 100 μm spacing was greater than the current density of the diamond microelectrodes with 40 μm spacing and the planar diamond electrode.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

276-280

Citation:

Online since:

March 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Suzuki, A. Sugama, and N. Kojima, Sensors and Actuators B, 2 (1990) 297-303.

Google Scholar

[2] M. C. Granger, M. Witek, J. Xu, J. Wang, M. Hupert, A. Hanks, M. D. Koppang, J. E. Butler, G. Lucazeau, M. Mermoux, J. W. Srojek, and G. M. Swain, Anal. Chem. 2000, 72, 3793 – 3804.

DOI: 10.1021/ac0000675

Google Scholar

[3] M. Pagels, C. E. Hall, N. S. Lawrence, A. Meredith, T. G. J. Jones, H. P. Godfried, C. S. J. Pickles, J. Wilman, C. E. Banks, R. G. Compton, and L. Jiang, Anal. Chem. 2005, 77, 3705-3708.

DOI: 10.1021/ac0502100

Google Scholar

[4] A. L. Colley, C. G. Williams, U. H. Johansson, M. E. Newton, P. R. Unwin, N. R. Wilson, and J. V. Macpherson, Anal. Chem. 2006, 78, 2539-2548.

DOI: 10.1021/ac0520994

Google Scholar

[5] K.L. Soh, W.P. Kang, J.L. Davidson, S. Baru, Y.M. Wong, A. Wisitsora-at, D.E. Cliffel, A.B. Bonds, and G.M. Swain, Diam. Relat. Mater. 2004, 13, 2009-(2015).

Google Scholar

[6] K.L. Soh, W.P. Kang, J.L. Davidson, Y.M. Wong, D.E. Cliffel, and G.M. Swain, Diamond & Related Materials 17 (2008) 240-246.

DOI: 10.1016/j.diamond.2007.12.023

Google Scholar

[7] K.L. Soh ,W.P. Kang, J.L. Davidson, Y.M. Wong, A. Wisitsora-at, G. Swain, and D.E. Cliffel, Sensors and Actuators B, 91 (2003) 39-45.

DOI: 10.1016/s0925-4005(03)00064-9

Google Scholar

[8] C. Provent, W. Haenni, E. Santoli, and P. Rychen, Electrochimica Acta 49 (2004) 3737-3744.

DOI: 10.1016/j.electacta.2004.02.047

Google Scholar

[9] N. S. Lawrence, M. Pagels, A. Meredith, T. G. J. Jones, C. E. Hall, C. S. Jim Pickles, H. P. Godfried, C. E. Banks, R. G. Compton, and L. Jiang, Talanta 69 (2006) 829-834.

DOI: 10.1016/j.talanta.2005.11.020

Google Scholar

[10] L. Thaiyotin, E. Ratanaudompisut, T. Phetchakul, S. Cheirsirikul, and S. Supadech, Diamond and Related Materials 11 (2002) 442-445.

DOI: 10.1016/s0925-9635(01)00707-5

Google Scholar