Materials and Processes in Heat Assisted Magnetic Recording

Article Preview

Abstract:

The conventional magnetic recording has approached its physical limits. Further growth of the areal density is limited by the superparamagnetic effect and by the limited possibilities to further improve write heads design and pole materials in order to enhance the writing field. A new technology proposed to surpass these limits is the heat assisted magnetic recording (HAMR). The principle of HAMR and the structure of a HAMR system are discussed, as well as the processes characterizing the writing process and the requirements for the materials needed for this type of recording. Some important challenges of the HAMR technology are summarized.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

281-287

Citation:

Online since:

March 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M.H. Kryder, E.C. Gage, T.W. McDaniel, W.A. Challener, R.E. Rottmayer, G. Ju, Y. -T. Hsia and M.F. Erden, IEEE Trans. Magn. Vol. 42 (2006), p.2417.

DOI: 10.1109/jproc.2008.2004315

Google Scholar

[2] H. Gavrilă, Magnetic Recording, Printech, Bucharest, 2005 (in Romanian).

Google Scholar

[3] L. Pan andD.B. Bogy, Nature Photon, Vol. 3 (2009), p.189.

Google Scholar

[4] C.J. Sun, D.B. Xu, D.L. Brewe, S.M. Heald and G.M. Chow, IEEE Trans. Magn. Vol. 49 (2013), p.2510.

Google Scholar

[5] W.A. Challener, C. Peng, A.V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, V.J. Gokemeijer, Y. -T. Hsia, R.E. Rottmayer, M.A. Seigler and E.C. Gage, Nature Photon, Vol. 3 (2009), p.220.

DOI: 10.1038/nphoton.2009.26

Google Scholar

[6] T.W. McDaniel, W.A. Challener and K. Sendur, I.E.E.E. Trans. Magn. Vol. 39 (2003), p. (1972).

Google Scholar

[7] H. Takei, Y. Iwanabe, A. Ando, M. Mukoh and H. Miyamoto, IEEE Trans. Magn. Vol. 49 (2013), p.3557.

DOI: 10.1109/tmag.2013.2244579

Google Scholar

[8] H. Katayama, M. Hamamoto, J. Sato, Y. Murakami and K. Kojima, IEEE Trans. Magn. Vol. 36 (2000), p.195.

Google Scholar

[9] H. Gavrilă, J. of Optoelectronics and Adv. Materials Vol. 10 (2008), p.1796.

Google Scholar

[10] R. Coehoorn, S.R. Cumpson, J.J.M. Ruigrok, P. Hidding, F. Zijp, A.H.J. Immink and H.P. Urbach, in: Magnetic Storage Systems beyond 2000 (G.C. Hadjipanayis, Ed. ), Kluwer Academic Publishers (2001), p.571.

DOI: 10.1007/978-94-010-0624-8_55

Google Scholar

[11] A. Lyberatos and J. Hohlfeld, J. Appl. Phys. Vol. 95 (2004), p. (1949).

Google Scholar

[12] K.M. Cher, T.J. Zhou, W.K. Lim, J.F. Hu and P.W. Lwin, IEEE Trans. Magn. Vol. 49 (2013), p.2586.

Google Scholar

[13] F. Akagi, J. Ushiyama, A. Ando and H. Miyamoto, IEEE Trans. Magn. Vol. 49 (2013), p.3667.

Google Scholar

[14] J.F. Hu, T.J. Zhou, W.L. Phyoe, K.M. Cher and J.Z. Shi, I.E.E.E. Trans. Magn. Vol. 49 (2013), p.2703.

Google Scholar

[15] S.J. Greaves, Y. Kanai and H. Muraoka, I.E.E.E. Trans. Magn. Vol. 49 (2013), p.2665.

Google Scholar

[16] K. Kuriyama, M.J. Chabalko, Y. Kong, Y. Luo, T.E. Schlessinger and J.A. Bain, I.E.E.E. Trans. Magn. Vol. 49 (2013), p.3560.

Google Scholar

[17] E.B. Quirk, A. Gamble, R. Hussin, G. Slovin, Y. Kong, T.E. Schlessinger, J.A. Bain, K. Kuriyama and Y. Luo, I.E.E.E. Trans. Magn. Vol. 49 (2013), p.3564.

DOI: 10.1109/tmag.2013.2241036

Google Scholar

[18] J. -G. Zhu and H. Li, I.E.E.E. Trans. Magn. Vol. 49 (2013), p. (2013).

Google Scholar

[19] H. Li and J. -G. Zhu, I.E.E.E. Trans. Magn. Vol. 49 (2013), p.3568.

Google Scholar