Effect of Aluminium Sol on Silica Nanoparticles Texture and Properties

Article Preview

Abstract:

This Silica sols were synthesized by alkali hydrolysis of tetraethyl orthosilicate (TEOS). These sols were modified with different percentage of aluminum sol to convert silica from hydrophilic to hydrophobic. The compositions of unmodified and modified silica nanoparticles were studied by X-ray fluorescence (XRF) and confirmed that the aluminum was anchor to the surface of silica nanoparticles. Further analysis by FESEM and Thermo gravimetric analysis (TGA) showed that the amount of modifier added to the silica sols had distinct effect on morphology and thermal stability of silica nanoparticles respectively. X-ray diffraction analysis illustrated that modified silica nanoparticles are amorphous.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

56-60

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Tabatabaei, A. Shukohfar, R. Aghababazadeh, and A. Mirhabibi, Experimental study of the synthesis and characterisation of silica nanoparticles via the sol-gel method, 2006, p.371.

DOI: 10.1088/1742-6596/26/1/090

Google Scholar

[2] H. Zou, S. Wu, and J. Shen, Polymer/silica nanocomposites: preparation, characterization, properties, and applications, Chem . Rev. , vol. 108 pp.3893-3957, (2008).

DOI: 10.1021/cr068035q

Google Scholar

[3] S. Prabakar and R. A. Assink, Hydrolysis and condensation kinetics of two component organically modified silica sols* 1, J. Non-Cryst. Solids, vol. 211 1997, pp.39-48, (1997).

DOI: 10.1016/s0022-3093(96)00634-5

Google Scholar

[4] X. J. Zhang, S. Y. Zhao, C. X. Gao, and S. J. Wang, Amorphous sol–gel SiO2 film for protection of an orthorhombic phase alloy against high temperature oxidation, J. Sol-Gel Sci. Technol, vol. 49, pp.221-227, (2009).

DOI: 10.1007/s10971-008-1863-4

Google Scholar

[5] K. S. McCain and J. M. Harris, Total Internal Reflection Fluorescence-Correlation Spectroscopy Study of Molecular Transport in Thin Sol- Gel Films, Anal. Chem, vol. 75, pp.3616-3624, (2003).

DOI: 10.1021/ac0207731

Google Scholar

[6] W. Li, S. Seal, E. Megan, J. Ramsdell, K. Scammon, G. Lelong, L. Lachal, and K. A. Richardson, Physical and optical properties of sol-gel nano-silver doped silica film on glass substrate as a function of heat-treatment temperature, J. Appl Phys., vol. 93 2003, p.9553, (2003).

DOI: 10.1063/1.1571215

Google Scholar

[7] J. Hyeon-Lee, G. Beaucage, and S. E. Pratsinis, Aero-Sol- Gel Synthesis of Nanostructured Silica Powders, Chem. Mater, vol. 9, pp.2400-2403, (1997).

DOI: 10.1021/cm9703482

Google Scholar

[8] R. Kreiter, M. D. A. Rietkerk, H. L. Castricum, H. M. van Veen, J. E. ten Elshof, and J. F. Vente, Evaluation of hybrid silica sols for stable microporous membranes using high-throughput screening, in J. Sol-Gel Sci. Technol. vol. 2010, 2010, pp.1-8.

DOI: 10.1007/s10971-010-2208-7

Google Scholar

[9] K. S. Abou-El-Sherbini, Modification of aminopropyl silica gel with some chelating agents and their effect on its stability against hydrolysis, J. Sol-Gel Sci. Technol., vol. 51 2009, pp.228-237, (2009).

DOI: 10.1007/s10971-009-1975-5

Google Scholar

[10] T. Yang, H. Tian, and Y. Chen, Preparation of superhydrophobic silica films with honeycomb-like structure by emulsion method, J. Sol-Gel Sci. Technol, vol. 49, pp.243-246, (2009).

DOI: 10.1007/s10971-008-1855-4

Google Scholar

[11] T. Hwang, H. Y. Lee, H. Kim, and G. T. Kim, Two layered silica protective film made by a spray-and-dip coating method on 304 stainless steel, J. Sol-Gel sci. Technol., vol. 2010, pp.1-6, (2010).

DOI: 10.1007/s10971-010-2234-5

Google Scholar

[12] Y. J. H. Choi, U. Luo, T. J. M., Spontaneous formation of silver nanoparticles in aminosilica, Journal of sol-gel science and technology, vol. 51, pp.124-132, (2009).

DOI: 10.1007/s10971-009-1934-1

Google Scholar

[13] H. K. Guleryuz, I. Filiàtre, C. Grande, T. Einarsrud, M. A., Deposition of silica thin films formed by sol–gel method, Journal of sol-gel science and technology, vol. 54, pp.249-257, (2010).

DOI: 10.1007/s10971-010-2190-0

Google Scholar

[14] L. L. W. Hench, J. K., The sol-gel process, Chem. Rev., vol. 90 pp.33-72, (1990).

Google Scholar

[15] P. I. Falcaro, P., X-rays to study, induce, and pattern structures in sol–gel materials, J. Sol-Gel Sci. Technol., vol. 2011, pp.1-9, (2011).

DOI: 10.1007/s10971-009-2127-7

Google Scholar

[16] C. J. Brinker and G. W. Scherer, Sol-gel science: the physics and chemistry of sol-gel processing: Academic Pr, (1990).

Google Scholar

[17] C. R. Silva and C. Airoldi, Acid and Base Catalysts in the Hybrid Silica Sol-Gel Process, J. Colloid Interface Sci., vol. 195 1997, pp.381-387, (1997).

DOI: 10.1006/jcis.1997.5159

Google Scholar

[18] C. J. Brinker and G. W. Scherer, The physics and chemistry of sol-gel processing, Sol-gel science, vol. 141, pp.58-59, (1990).

Google Scholar

[19] G. Buelna and Y. S. Lin, Sol-gel-derived mesoporous [gamma]-alumina granules, Microporous and mesoporous materials, vol. 30, pp.359-369, (1999).

DOI: 10.1016/s1387-1811(99)00065-7

Google Scholar

[20] P. S. Nayak and B. K. Singh, Instrumental characterization of clay by XRF, XRD and FTIR, Bulletin of Materials Science, vol. 30, pp.235-238, (2007).

DOI: 10.1007/s12034-007-0042-5

Google Scholar

[21] H. K. C. Timken and M. M. Habib, Highly homogeneous amorphous silica-alumina catalyst composition, US Patent App. 20, 060/079, 398, (2005).

Google Scholar