[1]
M. C. Roco and W. S. Bainbridge, Converging technologies for improving human performance: Integrating from the nanoscale, J. Nanopart. Res. 4 (2002) 281-295.
Google Scholar
[2]
V. Bianco, F. Chiacchio, O. Manca, and S. Nardini, Numerical investigation of nanofluids forced convection in circular tubes, Appl. Therm. Eng. 29 (2009) 3632-3642.
DOI: 10.1016/j.applthermaleng.2009.06.019
Google Scholar
[3]
S. Ahuja, Augmentation of heat transport in laminar flow of polystyrene suspensions. I. Experiments and results, J. Appl. Phys. 46 (1975) 3408-3416.
DOI: 10.1063/1.322107
Google Scholar
[4]
M. Shafahi, V. Bianco, K. Vafai, and O. Manca, An investigation of the thermal performance of cylindrical heat pipes using nanofluids, Int. J. Heat Mass Transfer 53(2010) 376-383.
DOI: 10.1016/j.ijheatmasstransfer.2009.09.019
Google Scholar
[5]
P. Naphon, P. Assadamongkol, and T. Borirak, Experimental investigation of titanium nanofluids on the heat pipe thermal efficiency, Int. Commun. Heat Mass 35 (2008) 1316-1319.
DOI: 10.1016/j.icheatmasstransfer.2008.07.010
Google Scholar
[6]
P. Naphon, D. Thongkum, and P. Assadamongkol, Heat pipe efficiency enhancement with refrigerant–nanoparticles mixtures, Energy Convers. Manage. 50 (2009), 772-776.
DOI: 10.1016/j.enconman.2008.09.045
Google Scholar
[7]
Y. Xuan, Y. Huang, and Q. Li, Experimental investigation on thermal conductivity and specific heat capacity of magnetic microencapsulated phase change material suspension, Chem. Phys. Lett. 479 (2009), 264-269.
DOI: 10.1016/j.cplett.2009.08.033
Google Scholar
[8]
Y. Xuan and Q. Li, Investigation on convective heat transfer and flow features of nanofluids, J. Heat Transfer 125 (2003) 151-155.
DOI: 10.1115/1.1532008
Google Scholar
[9]
Y. Xuan and W. Roetzel, Conceptions for heat transfer correlation of nanofluids, Int. J. Heat Mass Transfer 43 (2000) 3701-3707.
DOI: 10.1016/s0017-9310(99)00369-5
Google Scholar
[10]
Y. -T. Yang and F. -H. Lai, Numerical investigation of cooling performance with the use of Al2O3/water nanofluids in a radial flow system, Int. J. Therm. Sci. 50 (2011) 61-72.
DOI: 10.1016/j.ijthermalsci.2010.08.017
Google Scholar
[11]
K. B. Anoop, T. Sundararajan, and S. K. Das, Effect of particle size on the convective heat transfer in nanofluid in the developing region, Int. J. Heat Mass Transfer 52 (2009) 2189-2195.
DOI: 10.1016/j.ijheatmasstransfer.2007.11.063
Google Scholar
[12]
J. -Y. Jung and J. Y. Yoo, Thermal conductivity enhancement of nanofluids in conjunction with electrical double layer (EDL), Int. J. Heat Mass Transfer 52 (2009) 525-528.
DOI: 10.1016/j.ijheatmasstransfer.2008.07.016
Google Scholar
[13]
K. Khanafer and K. Vafai, A critical synthesis of thermophysical characteristics of nanofluids, Int. J. Heat Mass Transfer 54 (2011) 4410-4428.
DOI: 10.1016/j.ijheatmasstransfer.2011.04.048
Google Scholar
[14]
B. C. Pak and Y. I. Cho, Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles, Exp. Heat Transfer 11(1998) 151-170.
DOI: 10.1080/08916159808946559
Google Scholar
[15]
C. J. Ho, W. K. Liu, Y. S. Chang, and C. C. Lin, Natural convection heat transfer of alumina-water nanofluid in vertical square enclosures: An experimental study, Int. J. Therm. Sci. 49 (2010) 1345-1353.
DOI: 10.1016/j.ijthermalsci.2010.02.013
Google Scholar
[16]
C. J. Ho, L. C. Wei, and Z. W. Li, An experimental investigation of forced convective cooling performance of a microchannel heat sink with Al2O3/water nanofluid, Appl. Therm. Eng. 30 (2010) 96-103.
DOI: 10.1016/j.applthermaleng.2009.07.003
Google Scholar
[17]
M. J. P. Gallego, C. Casanova, J. L. Legido, and M. M. Piñeiro, CuO in water nanofluid: Influence of particle size and polydispersity on volumetric behaviour and viscosity, Fluid Phase Equilib. 300 (2011) 188-196.
DOI: 10.1016/j.fluid.2010.10.015
Google Scholar
[18]
P. K. Namburu, D. K. Das, K. M. Tanguturi, and R. S. Vajjha, Numerical study of turbulent flow and heat transfer characteristics of nanofluids considering variable properties, Int. J. Therm. Sci. 48 (2009) 290-302.
DOI: 10.1016/j.ijthermalsci.2008.01.001
Google Scholar
[19]
E. H. Masuda, K. Teramae, N. Hishinuma, Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles (dispersion of c-Al2O3, SiO2 and TiO2 ultra-fine particles), Netsu Bussei 4 (1993) 227-233.
DOI: 10.2963/jjtp.7.227
Google Scholar
[20]
J. A. Eastman, S. U. S. Choi, S. Li, W. Yu, and L. J. Thompson, Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles, Appl. Phys. Lett. 78 (2001) 718-720.
DOI: 10.1063/1.1341218
Google Scholar
[21]
J. A. Eastman, U. S. Choi, S. Li, G. Soyez, L. J. Thompson, and R. J. DiMelfi, Novel thermal properties of nanostructured materials, Mater. Sci. Forum 312 (1999) 629-634.
DOI: 10.4028/www.scientific.net/msf.312-314.629
Google Scholar
[22]
X. W. Wang, , X. F. Xu and Choi, Thermal conductivity of nanoparticle-fluid mixture, J. Thermophys Heat Transfer 13 (1999) 474-480.
DOI: 10.2514/2.6486
Google Scholar
[23]
S. E. B. Maïga, S. J. Palm, C. T. Nguyen, G. Roy, and N. Galanis, Heat transfer enhancement by using nanofluids in forced convection flows, Int. J. Heat Fluid Flow 26 (2005) 530-546.
DOI: 10.1016/j.ijheatfluidflow.2005.02.004
Google Scholar
[24]
N. Putra, W. Roetzel, and S. K. Das, Natural convection of nano-fluids, Heat Mass Transfer / Waerme-und Stoffue- bertragung 39 (2003) 775-784.
DOI: 10.1007/s00231-002-0382-z
Google Scholar
[25]
G. Maré, C.T. Nguyen, J. Miriel and G. Roy, Exp. Heat Transfer and viscosity study of nanofluids: water–γAl2O3, presented at the 2nd Int. Conf. Thermal Engrg. Theory and Applications, United Arab Emirates (2006).
Google Scholar
[26]
T. Nguyen, F. Desgranges, N. Galanis, G. Roy, T. Maré, S. Boucher, and H. Angue Mintsa, Viscosity data for Al2O3-water nanofluid-hysteresis: is heat transfer enhancement using nanofluids reliable?, Int. J. Therm. Sci. 47 (2008) 103-111.
DOI: 10.1016/j.ijthermalsci.2007.01.033
Google Scholar
[27]
T. Nguyen, F. Desgranges, G. Roy, N. Galanis, T. Maré, S. Boucher, and H. Angue Mintsa, Temperature and particle-size dependent viscosity data for water-based nanofluids – Hysteresis phenomenon, Int. J. Heat Fluid Flow 28 (2007) 1492-1506.
DOI: 10.1016/j.ijheatfluidflow.2007.02.004
Google Scholar
[28]
W. Yu, H. Xie, L. Chen, and Y. Li, Investigation of thermal conductivity and viscosity of ethylene glycol based ZnO nanofluid, Thermochim. Acta 491 (2009) 92-96.
DOI: 10.1016/j.tca.2009.03.007
Google Scholar
[29]
P. K. Namburu, D. P. Kulkarni, D. Misra, and D. K. Das, Viscosity of copper oxide nanoparticles dispersed in ethylene glycol and water mixture, Exp. Therm Fluid Sci. 32 (2007) 397-402.
DOI: 10.1016/j.expthermflusci.2007.05.001
Google Scholar
[30]
J. Buongiorno, Convective transport in nanofluids, ASME J. Heat Transfer 128 (2006) 240–250.
DOI: 10.1115/1.2150834
Google Scholar
[31]
W. J. Tseng and K. -C. Lin, Rheology and colloidal structure of aqueous TiO2 nanoparticle suspensions, Mater. Sci. Eng. 355 (2003) 186-192.
DOI: 10.1016/s0921-5093(03)00063-7
Google Scholar
[32]
Einstein, A., Rubber network formation, Anal. Phys. 19 (1906) 289.
Google Scholar
[33]
H. C. Brinkman, The viscosity of concentrated suspensions and solutions, J. Chem. Phys. 20 (1952).
Google Scholar
[34]
G. Batchelor, The effect of Brownian motion on the bulk stress in a suspension of spherical particles, Journal of Fluid Mechanics, 83 (1977) 21.
DOI: 10.1017/s0022112077001062
Google Scholar
[35]
T. Lundgren, Slow flow through stationary random beds and suspensions of spheres, J. Fluid Mech. 51 (1972) 273-299.
DOI: 10.1017/s002211207200120x
Google Scholar
[36]
R. Saidur, K. Y. Leong, and H. A. Mohammad, A review on applications and challenges of nanofluids, Renew. Sust. Energ. Rev. 15 (2011) 1646-1668.
Google Scholar
[37]
R. S. Vajjha and D. K. Das, Experimental determination of thermal conductivity of three nanofluids and development of new correlations, Int. J. Heat Mass Transfer 52 (2009) 4675-4682.
DOI: 10.1016/j.ijheatmasstransfer.2009.06.027
Google Scholar
[38]
H. A. Mintsa, G. Roy, C. T. Nguyen, and D. Doucet, New temperature dependent thermal conductivity data for water-based nanofluids, Int. J. Therm. Sci. 48 (2009) 363-371.
DOI: 10.1016/j.ijthermalsci.2008.03.009
Google Scholar
[39]
J. -H. Lee, K. S. Hwang, S. P. Jang, B. H. Lee, J. H. Kim, S. U. S. Choi, and C. J. Choi, Effective viscosities and thermal conductivities of aqueous nanofluids containing low volume concentrations of Al2O3 nanoparticles, Int. J. Heat Mass Transfer 51 (2008).
DOI: 10.1016/j.ijheatmasstransfer.2007.10.026
Google Scholar
[40]
Y. J. Hwang, Y. C. Ahn, H. S. Shin, C. G. Lee, G. T. Kim, H. S. Park, and J. K. Lee, Investigation on characteristics of thermal conductivity enhancement of nanofluids, Curr. Appl. Phys. 6 (2006) 1068-1071.
DOI: 10.1016/j.cap.2005.07.021
Google Scholar
[41]
H. U. Kang, S. H. Kim, and J. M. Oh, Estimation of thermal conductivity of nanofluid using experimental effective particle volume, Exp. Heat Transfer, 19 (2006) 181-191.
DOI: 10.1080/08916150600619281
Google Scholar
[42]
S. P. Jang, and Choi, Role of brownian motion in the enhanced thermal conductivity of nanofluids, J. Appl. Phys. 84 (2004) 3.
Google Scholar
[43]
S. P. Jang and S. U. S. Choi, Cooling performance of a microchannel heat sink with nanofluids, Appl. Therm. Eng. 26 (2006) 2457-2463.
DOI: 10.1016/j.applthermaleng.2006.02.036
Google Scholar
[44]
S. K. Das, N. Putra, P. Thiesen, and W. Roetzel, Temperature dependence of thermal conductivity enhancement for nanofluids, J. Heat Transfer 125 (2003) 567–574.
DOI: 10.1115/1.1571080
Google Scholar
[45]
S. Jana, A. Salehi-Khojin, and W. -H. Zhong, Enhancement of fluid thermal conductivity by the addition of single and hybrid nano-additives, Thermochimi. Acta 462 (2007) 45-55.
DOI: 10.1016/j.tca.2007.06.009
Google Scholar
[46]
Yang, Carbon nanofluids for lubricant application, PhD, University of Kentucky, (2006).
Google Scholar
[47]
S.U.S. Choi, Z.G. Zhang, W. Yu, F.E. Lockwood and E.A. Grulke, Anomalous thermal conductivity enhancement in nanotube suspensions, Appl. Phys. Lett. 79 (2001) 2252-2254.
DOI: 10.1063/1.1408272
Google Scholar
[48]
M. -S. Liu, M. C. -C. Lin, C. Y. Tsai, and C. -C. Wang, Enhancement of thermal conductivity with Cu for nanofluids using chemical reduction method, Int. J. Heat Mass Transfer 49 (2006) 3028-3033.
DOI: 10.1016/j.ijheatmasstransfer.2006.02.012
Google Scholar
[49]
D. A. G. Bruggemen, Berechnung Verschiedener Physikalischer Konstanten von Heterogenen Substanzen, I. Dielektrizitatskonstanten und Leitfahigkeiten der Mischkorper aus Isotropen Substanzen, Ann. Phys. Leipzig 90 (1935) 636-679.
DOI: 10.1002/andp.19354160802
Google Scholar
[50]
R. L. Hamilton and O. K. Crosser, Thermal conductivity of heterogeneous two-component systems, Ind. Eng. Chem. Fund. 1 (1962) 187-191.
DOI: 10.1021/i160003a005
Google Scholar
[51]
S.Q. Zhou and R. Ni, Measurement of the specific heat capacity of water-based Al2O3 nanofluid, Appl. Phys. Lett. 92 (2008) 93-123.
DOI: 10.1063/1.2890431
Google Scholar
[52]
L. P. Zhou, B. X. Wang, X. F. Peng, X. Z. Du, and Y. P. Yang, On the specific heat Capacity of CuO nanofluid, Adv. Mech. Eng. (Hindawi Publishing Corporation), 172085 (2010) 1-4.
Google Scholar
[53]
S. Sinha, S. Barjami, G. Iannacchione, and S. Sinha, Thermal properties of carbon nanotube based fluids, in Memphis-Area Engineering and Sciences Conference (MAESC '04), (2004).
Google Scholar
[54]
S. U. Ilyas, R. Pendyala, and N. Marneni, Settling characteristics of alumina nanoparticles in ethanol-water mixtures, Applied Mechanics and Materials 372 (2013) 143-148.
DOI: 10.4028/www.scientific.net/amm.372.143
Google Scholar