A Review on the Viscous and Thermal Transport Properties of Nanofluids

Article Preview

Abstract:

In modern science and engineering nanofluids are playing a vital role in the application of heat transfer devices due to their effective properties. Addition of nanoparticles in the fluid can alter thermophysical properties of the nanofluid. Experimental and theoretical studies are essential to understand the change in fluid dynamics aspects of the fluid by the addition of nanoparticles. This paper presents a brief review on the viscous and thermal transport effects of nanofluids. The main emphasis is on the comparison of previous theoretical and experimental studies for thermophysical properties of nanofluids. These properties include density, viscosity, thermal conductivity and specific heat capacity of nanofluids.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

18-27

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. C. Roco and W. S. Bainbridge, Converging technologies for improving human performance: Integrating from the nanoscale, J. Nanopart. Res. 4 (2002) 281-295.

Google Scholar

[2] V. Bianco, F. Chiacchio, O. Manca, and S. Nardini, Numerical investigation of nanofluids forced convection in circular tubes, Appl. Therm. Eng. 29 (2009) 3632-3642.

DOI: 10.1016/j.applthermaleng.2009.06.019

Google Scholar

[3] S. Ahuja, Augmentation of heat transport in laminar flow of polystyrene suspensions. I. Experiments and results, J. Appl. Phys. 46 (1975) 3408-3416.

DOI: 10.1063/1.322107

Google Scholar

[4] M. Shafahi, V. Bianco, K. Vafai, and O. Manca, An investigation of the thermal performance of cylindrical heat pipes using nanofluids, Int. J. Heat Mass Transfer 53(2010) 376-383.

DOI: 10.1016/j.ijheatmasstransfer.2009.09.019

Google Scholar

[5] P. Naphon, P. Assadamongkol, and T. Borirak, Experimental investigation of titanium nanofluids on the heat pipe thermal efficiency, Int. Commun. Heat Mass 35 (2008) 1316-1319.

DOI: 10.1016/j.icheatmasstransfer.2008.07.010

Google Scholar

[6] P. Naphon, D. Thongkum, and P. Assadamongkol, Heat pipe efficiency enhancement with refrigerant–nanoparticles mixtures, Energy Convers. Manage. 50 (2009), 772-776.

DOI: 10.1016/j.enconman.2008.09.045

Google Scholar

[7] Y. Xuan, Y. Huang, and Q. Li, Experimental investigation on thermal conductivity and specific heat capacity of magnetic microencapsulated phase change material suspension, Chem. Phys. Lett. 479 (2009), 264-269.

DOI: 10.1016/j.cplett.2009.08.033

Google Scholar

[8] Y. Xuan and Q. Li, Investigation on convective heat transfer and flow features of nanofluids, J. Heat Transfer 125 (2003) 151-155.

DOI: 10.1115/1.1532008

Google Scholar

[9] Y. Xuan and W. Roetzel, Conceptions for heat transfer correlation of nanofluids, Int. J. Heat Mass Transfer 43 (2000) 3701-3707.

DOI: 10.1016/s0017-9310(99)00369-5

Google Scholar

[10] Y. -T. Yang and F. -H. Lai, Numerical investigation of cooling performance with the use of Al2O3/water nanofluids in a radial flow system, Int. J. Therm. Sci. 50 (2011) 61-72.

DOI: 10.1016/j.ijthermalsci.2010.08.017

Google Scholar

[11] K. B. Anoop, T. Sundararajan, and S. K. Das, Effect of particle size on the convective heat transfer in nanofluid in the developing region, Int. J. Heat Mass Transfer 52 (2009) 2189-2195.

DOI: 10.1016/j.ijheatmasstransfer.2007.11.063

Google Scholar

[12] J. -Y. Jung and J. Y. Yoo, Thermal conductivity enhancement of nanofluids in conjunction with electrical double layer (EDL), Int. J. Heat Mass Transfer 52 (2009) 525-528.

DOI: 10.1016/j.ijheatmasstransfer.2008.07.016

Google Scholar

[13] K. Khanafer and K. Vafai, A critical synthesis of thermophysical characteristics of nanofluids, Int. J. Heat Mass Transfer 54 (2011) 4410-4428.

DOI: 10.1016/j.ijheatmasstransfer.2011.04.048

Google Scholar

[14] B. C. Pak and Y. I. Cho, Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles, Exp. Heat Transfer 11(1998) 151-170.

DOI: 10.1080/08916159808946559

Google Scholar

[15] C. J. Ho, W. K. Liu, Y. S. Chang, and C. C. Lin, Natural convection heat transfer of alumina-water nanofluid in vertical square enclosures: An experimental study, Int. J. Therm. Sci. 49 (2010) 1345-1353.

DOI: 10.1016/j.ijthermalsci.2010.02.013

Google Scholar

[16] C. J. Ho, L. C. Wei, and Z. W. Li, An experimental investigation of forced convective cooling performance of a microchannel heat sink with Al2O3/water nanofluid, Appl. Therm. Eng. 30 (2010) 96-103.

DOI: 10.1016/j.applthermaleng.2009.07.003

Google Scholar

[17] M. J. P. Gallego, C. Casanova, J. L. Legido, and M. M. Piñeiro, CuO in water nanofluid: Influence of particle size and polydispersity on volumetric behaviour and viscosity, Fluid Phase Equilib. 300 (2011) 188-196.

DOI: 10.1016/j.fluid.2010.10.015

Google Scholar

[18] P. K. Namburu, D. K. Das, K. M. Tanguturi, and R. S. Vajjha, Numerical study of turbulent flow and heat transfer characteristics of nanofluids considering variable properties, Int. J. Therm. Sci. 48 (2009) 290-302.

DOI: 10.1016/j.ijthermalsci.2008.01.001

Google Scholar

[19] E. H. Masuda, K. Teramae, N. Hishinuma, Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles (dispersion of c-Al2O3, SiO2 and TiO2 ultra-fine particles), Netsu Bussei 4 (1993) 227-233.

DOI: 10.2963/jjtp.7.227

Google Scholar

[20] J. A. Eastman, S. U. S. Choi, S. Li, W. Yu, and L. J. Thompson, Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles, Appl. Phys. Lett. 78 (2001) 718-720.

DOI: 10.1063/1.1341218

Google Scholar

[21] J. A. Eastman, U. S. Choi, S. Li, G. Soyez, L. J. Thompson, and R. J. DiMelfi, Novel thermal properties of nanostructured materials, Mater. Sci. Forum 312 (1999) 629-634.

DOI: 10.4028/www.scientific.net/msf.312-314.629

Google Scholar

[22] X. W. Wang, , X. F. Xu and Choi, Thermal conductivity of nanoparticle-fluid mixture, J. Thermophys Heat Transfer 13 (1999) 474-480.

DOI: 10.2514/2.6486

Google Scholar

[23] S. E. B. Maïga, S. J. Palm, C. T. Nguyen, G. Roy, and N. Galanis, Heat transfer enhancement by using nanofluids in forced convection flows, Int. J. Heat Fluid Flow 26 (2005) 530-546.

DOI: 10.1016/j.ijheatfluidflow.2005.02.004

Google Scholar

[24] N. Putra, W. Roetzel, and S. K. Das, Natural convection of nano-fluids, Heat Mass Transfer / Waerme-und Stoffue- bertragung 39 (2003) 775-784.

DOI: 10.1007/s00231-002-0382-z

Google Scholar

[25] G. Maré, C.T. Nguyen, J. Miriel and G. Roy, Exp. Heat Transfer and viscosity study of nanofluids: water–γAl2O3, presented at the 2nd Int. Conf. Thermal Engrg. Theory and Applications, United Arab Emirates (2006).

Google Scholar

[26] T. Nguyen, F. Desgranges, N. Galanis, G. Roy, T. Maré, S. Boucher, and H. Angue Mintsa, Viscosity data for Al2O3-water nanofluid-hysteresis: is heat transfer enhancement using nanofluids reliable?, Int. J. Therm. Sci. 47 (2008) 103-111.

DOI: 10.1016/j.ijthermalsci.2007.01.033

Google Scholar

[27] T. Nguyen, F. Desgranges, G. Roy, N. Galanis, T. Maré, S. Boucher, and H. Angue Mintsa, Temperature and particle-size dependent viscosity data for water-based nanofluids – Hysteresis phenomenon, Int. J. Heat Fluid Flow 28 (2007) 1492-1506.

DOI: 10.1016/j.ijheatfluidflow.2007.02.004

Google Scholar

[28] W. Yu, H. Xie, L. Chen, and Y. Li, Investigation of thermal conductivity and viscosity of ethylene glycol based ZnO nanofluid, Thermochim. Acta 491 (2009) 92-96.

DOI: 10.1016/j.tca.2009.03.007

Google Scholar

[29] P. K. Namburu, D. P. Kulkarni, D. Misra, and D. K. Das, Viscosity of copper oxide nanoparticles dispersed in ethylene glycol and water mixture, Exp. Therm Fluid Sci. 32 (2007) 397-402.

DOI: 10.1016/j.expthermflusci.2007.05.001

Google Scholar

[30] J. Buongiorno, Convective transport in nanofluids, ASME J. Heat Transfer 128 (2006) 240–250.

DOI: 10.1115/1.2150834

Google Scholar

[31] W. J. Tseng and K. -C. Lin, Rheology and colloidal structure of aqueous TiO2 nanoparticle suspensions, Mater. Sci. Eng. 355 (2003) 186-192.

DOI: 10.1016/s0921-5093(03)00063-7

Google Scholar

[32] Einstein, A., Rubber network formation, Anal. Phys. 19 (1906) 289.

Google Scholar

[33] H. C. Brinkman, The viscosity of concentrated suspensions and solutions, J. Chem. Phys. 20 (1952).

Google Scholar

[34] G. Batchelor, The effect of Brownian motion on the bulk stress in a suspension of spherical particles, Journal of Fluid Mechanics, 83 (1977) 21.

DOI: 10.1017/s0022112077001062

Google Scholar

[35] T. Lundgren, Slow flow through stationary random beds and suspensions of spheres, J. Fluid Mech. 51 (1972) 273-299.

DOI: 10.1017/s002211207200120x

Google Scholar

[36] R. Saidur, K. Y. Leong, and H. A. Mohammad, A review on applications and challenges of nanofluids, Renew. Sust. Energ. Rev. 15 (2011) 1646-1668.

Google Scholar

[37] R. S. Vajjha and D. K. Das, Experimental determination of thermal conductivity of three nanofluids and development of new correlations, Int. J. Heat Mass Transfer 52 (2009) 4675-4682.

DOI: 10.1016/j.ijheatmasstransfer.2009.06.027

Google Scholar

[38] H. A. Mintsa, G. Roy, C. T. Nguyen, and D. Doucet, New temperature dependent thermal conductivity data for water-based nanofluids, Int. J. Therm. Sci. 48 (2009) 363-371.

DOI: 10.1016/j.ijthermalsci.2008.03.009

Google Scholar

[39] J. -H. Lee, K. S. Hwang, S. P. Jang, B. H. Lee, J. H. Kim, S. U. S. Choi, and C. J. Choi, Effective viscosities and thermal conductivities of aqueous nanofluids containing low volume concentrations of Al2O3 nanoparticles, Int. J. Heat Mass Transfer 51 (2008).

DOI: 10.1016/j.ijheatmasstransfer.2007.10.026

Google Scholar

[40] Y. J. Hwang, Y. C. Ahn, H. S. Shin, C. G. Lee, G. T. Kim, H. S. Park, and J. K. Lee, Investigation on characteristics of thermal conductivity enhancement of nanofluids, Curr. Appl. Phys. 6 (2006) 1068-1071.

DOI: 10.1016/j.cap.2005.07.021

Google Scholar

[41] H. U. Kang, S. H. Kim, and J. M. Oh, Estimation of thermal conductivity of nanofluid using experimental effective particle volume, Exp. Heat Transfer, 19 (2006) 181-191.

DOI: 10.1080/08916150600619281

Google Scholar

[42] S. P. Jang, and Choi, Role of brownian motion in the enhanced thermal conductivity of nanofluids, J. Appl. Phys. 84 (2004) 3.

Google Scholar

[43] S. P. Jang and S. U. S. Choi, Cooling performance of a microchannel heat sink with nanofluids, Appl. Therm. Eng. 26 (2006) 2457-2463.

DOI: 10.1016/j.applthermaleng.2006.02.036

Google Scholar

[44] S. K. Das, N. Putra, P. Thiesen, and W. Roetzel, Temperature dependence of thermal conductivity enhancement for nanofluids, J. Heat Transfer 125 (2003) 567–574.

DOI: 10.1115/1.1571080

Google Scholar

[45] S. Jana, A. Salehi-Khojin, and W. -H. Zhong, Enhancement of fluid thermal conductivity by the addition of single and hybrid nano-additives, Thermochimi. Acta 462 (2007) 45-55.

DOI: 10.1016/j.tca.2007.06.009

Google Scholar

[46] Yang, Carbon nanofluids for lubricant application, PhD, University of Kentucky, (2006).

Google Scholar

[47] S.U.S. Choi, Z.G. Zhang, W. Yu, F.E. Lockwood and E.A. Grulke, Anomalous thermal conductivity enhancement in nanotube suspensions, Appl. Phys. Lett. 79 (2001) 2252-2254.

DOI: 10.1063/1.1408272

Google Scholar

[48] M. -S. Liu, M. C. -C. Lin, C. Y. Tsai, and C. -C. Wang, Enhancement of thermal conductivity with Cu for nanofluids using chemical reduction method, Int. J. Heat Mass Transfer 49 (2006) 3028-3033.

DOI: 10.1016/j.ijheatmasstransfer.2006.02.012

Google Scholar

[49] D. A. G. Bruggemen, Berechnung Verschiedener Physikalischer Konstanten von Heterogenen Substanzen, I. Dielektrizitatskonstanten und Leitfahigkeiten der Mischkorper aus Isotropen Substanzen, Ann. Phys. Leipzig 90 (1935) 636-679.

DOI: 10.1002/andp.19354160802

Google Scholar

[50] R. L. Hamilton and O. K. Crosser, Thermal conductivity of heterogeneous two-component systems, Ind. Eng. Chem. Fund. 1 (1962) 187-191.

DOI: 10.1021/i160003a005

Google Scholar

[51] S.Q. Zhou and R. Ni, Measurement of the specific heat capacity of water-based Al2O3 nanofluid, Appl. Phys. Lett. 92 (2008) 93-123.

DOI: 10.1063/1.2890431

Google Scholar

[52] L. P. Zhou, B. X. Wang, X. F. Peng, X. Z. Du, and Y. P. Yang, On the specific heat Capacity of CuO nanofluid, Adv. Mech. Eng. (Hindawi Publishing Corporation), 172085 (2010) 1-4.

Google Scholar

[53] S. Sinha, S. Barjami, G. Iannacchione, and S. Sinha, Thermal properties of carbon nanotube based fluids, in Memphis-Area Engineering and Sciences Conference (MAESC '04), (2004).

Google Scholar

[54] S. U. Ilyas, R. Pendyala, and N. Marneni, Settling characteristics of alumina nanoparticles in ethanol-water mixtures, Applied Mechanics and Materials 372 (2013) 143-148.

DOI: 10.4028/www.scientific.net/amm.372.143

Google Scholar