Incorporation of Pd Nanoparticles on Rod and Necklace-Like SBA-15 Supports Materials

Article Preview

Abstract:

Ion-exchange of palladium (Pd) precursor for two different types of well-ordered SBA-15 morphologies, necklace-like and rod-like, was studied. Approximately 3.8 wt% Pd was successfully incorporated into SBA-15 at pH 10.3. Formation of SBA-15 and Pd/SBA-15 were characterized by Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM), Thermogravimetry with Simultaneous Difference Thermal Spectroscopy coupled with mass spectrometer (TG/SDTA-MS), Thermogravimetry in combination with Simultaneous Difference Thermal Spectroscopy (TG-SDTA), Inductive Coupled Plasma Mass Spectrometer (ICP-MS) and N2 adsorption-desorption. Reduction of surface area and pore volume of support for Pd/SBA-15 samples may indicate the encapsulation of PdO particles within mesoporous channels of SBA-15.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

10-17

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Zhao, D., Feng, J., Huo, Q., Melosh, N., Fredrickson, G.H., Chmelka, B.F., Stucky, G.D. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores, Sci 279 (1998a) 548-552.

DOI: 10.1126/science.279.5350.548

Google Scholar

[2] Zhao, D. Feng, J., Huo, Q., Chmelka, B.F., Stucky, G.D. Nonionic Triblock and Star Diblock Copolymer and Oligomeric Surfactant Syntheses of Highly Ordered, Hydrothermally Stable, Mesoporous Silica Structures, J. Am. Chem. Soc. 120 (1998b), 6024-6036.

DOI: 10.1021/ja974025i

Google Scholar

[3] Chen, L., C., Wang, Y.M., He, M-Y. Morphological control of mesoporous silica SBA-15 synthesized at low temperature without additives, J. Porous Mater. 18 (2010), 211-216.

DOI: 10.1007/s10934-010-9372-6

Google Scholar

[4] Kosuge, K., Kikukawa, N., Takemori, M. One-Step Preparation of Porous Silica Spheres from Sodium Silicate Using Triblock Copolymer Templating, Chem. Mater. 16 (2004), 4181- 4186.

DOI: 10.1021/cm0400177

Google Scholar

[5] Kubo, S., Kosuge, K. Salt-induced formation of uniform fiberlike SBA-15 mesoporous silica particles and application to toluene adsorption, Langmuir 23 (2007), 11761 - 11768.

DOI: 10.1021/la701556y

Google Scholar

[6] Sayari, A., Han, B. -H., Yang, Y. Simple synthesis route to monodispersed SBA-15 silica rods, J. Am. Chem. Soc. 126 (2004), 14348 – 14349.

DOI: 10.1021/ja0478734

Google Scholar

[7] Chao, M. -C., Chang, C-H., Lin, H-P., Tang, C-Y., Lin, C-Y. Morphological control on SBA-15 mesoporous silicas via a slow self-assembling rate. J. Mater. Sci. 44 (2009), 6453 – 6462.

DOI: 10.1007/s10853-009-3610-9

Google Scholar

[8] Kosuge, K., Kubo, S., Kikukawa, N., Takemori, M. Effect of Pore Structure in Mesoporous Silicas on VOC Dynamic Adsorption/Desorption Performance, Langmuir 23 (2007), 3095 – 3102.

DOI: 10.1021/la062616t

Google Scholar

[9] Han, P., Wang, X., Qiu, X., Ji, X., Gao, L. One-step synthesis of Palladium/SBA-15 nanocomposites and its catalytic application, J. Mol. Catal. A: Chem. 272 (2007), 136 – 141.

DOI: 10.1016/j.molcata.2007.03.006

Google Scholar

[10] Chen, L. -F., Guo, P-J., Zhu, L-J., Qiao, M-H., W.S., Xu, H-L. & Fan, K-N. Preparation of Cu/SBA-15 catalysts by different methods for the hydrogenolysis of dimethyl maleate to 1, 4-butanediol, Appl. Catal., A. 356 (2009), 129 – 136.

DOI: 10.1016/j.apcata.2008.12.029

Google Scholar

[11] Neri, G., Musolino, M.G., Milone, C., Pietropaolo, D., Galvagno, S. Particle size effect in the catalytic hydrogenation of 2, 4-dinitrotoluene over Pd/C catalysts, Appl. Catal., A. 208 (2001), 307 – 316.

DOI: 10.1016/s0926-860x(00)00717-1

Google Scholar

[12] Yin, F., Ji, S., Wu, P., Zhao, F., Li., C. Deactivation behavior of Pd-based SBA-15 mesoporous silica catalysts for the catalytic combustion of methane, J. Catal. 257 (2008), 108 – 116.

DOI: 10.1016/j.jcat.2008.04.010

Google Scholar

[13] Pozzo, M., Alfè, D. Hydrogen dissociation and diffusion on transition metal (=Ti, Zr, V, Fe, Ru, Co, Rh, Ni, Pd, Cu, Ag)-doped Mg(0001) surfaces, Int. J. Hydrogen Energy 34 (2009), 1922 – (1930).

DOI: 10.1016/j.ijhydene.2008.11.109

Google Scholar

[14] Yuranov I., Moeckli P., Suvorova E., Buffat P., Kiwi-Minsker L., Renken, A. Pd/SiO2 catalysts: synthesis of Pd nanoparticles with the controlled size in mesoporous silicas, J. Mol. Catal., A 192 (2003), 239 – 251.

DOI: 10.1016/s1381-1169(02)00441-7

Google Scholar

[15] Changli, L., Qinghong, Z., Ye, W., Huilin, W. Preparation, Characterization and Catalytic Activity of Palladium Nanoparticles Encapsulated in SBA-15, Catal. Lett. 120 (2007), 126 – 136.

DOI: 10.1007/s10562-007-9263-x

Google Scholar

[16] Kleitz, F., Schmidt, W., Schüth, F. Evolution of mesoporous materials during the calcination process: structural and chemical behavior, Microporous Mesoporous Mater. 44-45 (2001), 95 – 109.

DOI: 10.1016/s1387-1811(01)00173-1

Google Scholar