Controlling Mechanism of Soluble Phosphates during CaCO3 Whiskers Synthesis

Article Preview

Abstract:

CaCO3 whiskers were synthesized with soluble phosphates by one-step carbonization method, controlling mechanisms were investigated via XRD and FTIR, and it has been indicated that the most stable calcium phosphates in thermodynamics, hydroxyapatite was formed through the reaction of soluble phosphates and Ca(OH)2 in advance before CO2 was introduced, and then [CO32-(OH)] entered the crystal lattices of hydroxyapatite to replace partially [PO43-] to yield B-carbonate hydroxyapatite in the early stage of blowing CO2, which induced aragonite to heterogeneously nucleate as nucleation center and grew into calcium carbonate whiskers by the continuous stack of Ca2+ and CO32-, while other HA selectly adsorbed onto the flanks of CaCO3 to control crystal morphology.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

47-53

Citation:

Online since:

January 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.C. Jamieson: J. Chem. Phys Vol. 21 (1953), pp.1385-1390.

Google Scholar

[2] N. Spanos, P.G. Koutsoukos: Journal of Crystal Growth Vol. 191 (1998), pp.783-790.

Google Scholar

[3] A. Gutjahr, H. Dabringhaus: Crystal Growth Vol. 158 (1996), pp.296-309.

Google Scholar

[4] M. Kitamura, H. Konno, A. Yasui, et al: Journal of Crystal Growth Vol. 236 (2002), p.: 323-332.

Google Scholar

[5] H. Konno, Y. Nanri, M. Kitamura: Powder Technology Vol. 129 (2003), pp.15-21.

Google Scholar

[6] K. Kiyoshi, K. Haruo, JP Patent 2006028003A. (2006).

Google Scholar

[7] F. GH, H. George, T. RI, et al, U.S. Patent 6071336. (2000).

Google Scholar

[8] T. Iwashita, Y. Ota, JP Patent 0581981A1. (1992).

Google Scholar

[9] S. Keiko, H. Takeshi, H. Hironao, JP Patent 200135446A. (2001).

Google Scholar

[10] Katayama H,Shibata H,Fujiwara T, DE FR GB, EP Patent 0406662 B1. (1995).

Google Scholar

[11] H. Enguang, S. Wenyu, C. Shoutian: Rare Metal Materials and Engineering Vol. 29 (2000), pp.398-402.

Google Scholar

[12] M. Wang, H. K. Zou, L. Shao, et al: Powder Technology Vol. 142 (2004), pp.166-174.

Google Scholar

[13] T. congxue: JOURNAL OF PANZHIHUA UNIVERSITY Vol. 16 (1999), pp.77-82.

Google Scholar

[14] H. Zhiliang ; W. Dawei; L. Yu; et al: Spectroscopy and Spectral Analysis Vol. 22 (2002), pp.949-953.

Google Scholar

[15] X. Lihua, W. Jianqing: Journal of the Chinese Ceramic Society Vol. 33 (2005), pp.1110-1114.

Google Scholar

[16] Zh. Weizhuo, H. Sukun: Crystal Growth Morphology (Science Press, Beijing 1999).

Google Scholar

[17] Zh. Shanrong: Crystallography and Mineralogy (Higher Education Press, Beijing (2004).

Google Scholar

[18] P. Zhaolu: Crystallography and Mineralogy (Geology Press, Beijing (1994).

Google Scholar

[19] A. D., R. M., C. M., et al: Journal of Growth Vol. 182 (1997), pp.168-184.

Google Scholar

[20] K. J. Westin, A. C. Rasmuson: Journal of Colloid and Interface Science Vol. 282 (2005), pp.359-369.

Google Scholar

[21] L. Yu, X. Huanyan: Journal of Mineralogy and Petrology Vol. 21 (2001), pp.1-4.

Google Scholar

[22] G. Weimin, Ch. Yunfa: China Forum on Nano Technology Application, Beijing (2004).

Google Scholar