Preparatory Electrodeposition Process for High Purity Bulk Aluminum

Article Preview

Abstract:

Electrodeposition for Al from a dimethylsulfone (DMSO2) bath was consecutively performed, applying two types of current waveforms such as direct current and pulsed current, to investigate the effect of a current type on the preparatory electrodeposition (pre-electrodeposition) process. Electrodeposited Al from a DMSO2 bath has a nanograined structure and high strength. However, the electrodeposits showed no plastic deformability due to the large amount of sulfur and chlorine which were incorporated into the electrodeposits as sulfide and chloride. Therefore, we obtained high purity Al from a DMSO2 bath using pre-electrodeposition process, which could decrease sulfur and chlorine contents without using additives. The sulfur and chlorine contents of electrodeposits, obtained from a DMSO2 bath applying both types current, both decreased to approximately 0.1 at.%. This result indicated that the waveforms made no difference in pre-electrodeposition process.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

237-241

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] I. Matsui, S. Ono, Y. Takigawa, T. Uesugi, K. Higashi, Mater. Sci. Eng. A 550 (2012) 363–366.

Google Scholar

[2] I. Matsui, Y, Takigawa, T. Uesugi, K. Higashi, Mater. Sci. Forum 654–656 (2010) 1114–1117.

DOI: 10.4028/www.scientific.net/msf.654-656.1114

Google Scholar

[3] I. Matsui, Y, Takigawa, T. Uesugi, K. Higashi, Mater. Lett. 65 (2011) 2651–2353.

Google Scholar

[4] I. Matsui, Y, Takigawa, T. Uesugi, K. Higashi, Mater. Trans. 52 (2011) 142–146.

Google Scholar

[5] I. Matsui, H. Iwami, Y. Takigawa, T. Uesugi, K. Higashi, J. Surf. Finish. Soc. Jpn. 62 (2011) 686–690.

Google Scholar

[6] I. Matsui, Y, Takigawa, T. Uesugi, K. Higashi, Microelectron. Eng. 91 (2012) 98–101.

Google Scholar

[7] I. Matsui, Y, Takigawa, T. Uesugi, K. Higashi, Mater. Sci. Eng. A 578 (2013) 318–322.

Google Scholar

[8] I. Matsui, Y, Takigawa, T. Uesugi, K. Higashi, Mater. Lett. 99 (2013) 65–67.

Google Scholar

[9] I. Matsui, T. Uesugi, Y, Takigawa, K. Higashi, Acta Mater, 61 (2013) 3360–3369.

Google Scholar

[10] M.A. Meyers, A. Mishra, D.J. Benson, Prog. Mater Sci. 51 (2006) 427–556.

Google Scholar

[11] C.A. Schuh, T.G. Nieh, H. Iwasaki, Acta Mater. 51 (2003) 431–443.

Google Scholar

[12] A.A. Karimpoor, U. Erb, K.T. Aust, G. Palumbo, Scripta Mater. 49 (2003) 651–656.

Google Scholar

[13] L. Lu, M.L. Suim K. Lu, Science 287 (2000) 1443–1446.

Google Scholar

[14] A. Giga, Y. Kimoto, Y. Takigawa, K. Higashi, Scripta Mater. 55 (2006) 143–146.

Google Scholar

[15] Y. Kimoto, S. Wakayama, Y. Takigawa, K. Higashi, Mater. Trans. 48 (2007) 1483–1491.

Google Scholar

[16] Y. Kimoto, A. Giga, T. Ohkubo, Y. Takigawa, K. Hono, K. Higashi, Mater. Trans. 48 (2007) 996–1000.

DOI: 10.2320/matertrans.48.996

Google Scholar

[17] A. Fujii, Y. Kimoto, S. Wakayama, Y, Takigawa, T. Uesugi, K. Higashi, Advanced Materials Research 24–25 (2007) 691–694.

Google Scholar

[18] S. Wakayama, Y. Kimoto, Y. Takigawa, T. Uesugi, K. Higashi, Mater. Sci. Forum 561–565 (2007) 6309–6317.

Google Scholar

[19] S. Ruan, C.A. Schuh, Acta Mater. 57 (2009) 3810–3822.

Google Scholar

[20] S. Ruan, C.A. Schuh, J. Mater. Res. 27 (2012) 1638–1651.

Google Scholar

[21] Y. Zhao, T.J. VanderNoot. Electrochim. Acta 42 (1997) 3–13.

Google Scholar

[22] T. Jiang, M.J. Chollier Brym, G. Dubé, A. Lasia, G.M. Brisard, Surf. Coat. Technol. 201 (2006) 1–9.

Google Scholar

[23] T. Jiang, M.J. Chollier Brym, G. Dubé, A. Lasia, G.M. Brisard, Surf. Coat. Technol. 201 (2006) 10–18.

Google Scholar

[24] L. Legrand, E. Chassaing, A. Chausse, R. Messina, Electrochim. Acta 43 (1998) 3109–3115.

Google Scholar

[25] L. Legrand, A. Chaussé, R. Messina, J. Electrochem. Soc. 145 (1998) 110–115.

Google Scholar

[26] L. Legrand, A. Tranchant, R. Messina, Electrochim. Acta 41 (1996) 2715–2720.

Google Scholar

[27] L. Legrand, M. Heintz, A. Tranchant, R. Messina, Electrochim. Acta 40 (1995) 1711–1716.

DOI: 10.1016/0013-4686(95)00019-b

Google Scholar

[28] J. Fransaer, E. Leunis, T. Hirato, J.P. Celis, J. Appl. Electrochem. 32 (2002) 123–128.

DOI: 10.1023/a:1014738011603

Google Scholar

[29] T. Hirato, J. Fransaer, J.P. Celis, J. Electrochem. Soc. 148 (2001) C280–C283.

Google Scholar

[30] T. Jiang, M.J. Chollier Brym, G. Dubé, A. Lasia, G.M. Brisard, Surf. Coat. Technol. 201 (2007) 6309–6317.

DOI: 10.1016/j.surfcoat.2006.11.035

Google Scholar

[31] S. Shiomi, M. Miyake, T. Hirato, J. Electrochem. Soc. 159 (2012) D225–D229.

DOI: 10.1149/2.079204jes

Google Scholar

[32] M. Miyake, H. Motonami, S. Shiomi, T. Hirato, Surf. Coat. Technol. 206 (2012) 4225–4229.

Google Scholar

[33] I. Matsui, Y. Hanaoka, S. Ono, Y, Takigawa, T. Uesugi, K. Higashi, Mater. Lett. 109 (2013) 229–232.

Google Scholar