Influence of the Partitioning Treatment on the Mechanical Properties of a 0.3C-1.5Si-3.5Mn Q&P Steel

Article Preview

Abstract:

The Quenching and Partitioning (Q&P) process is a promising method for developing steels with superior mechanical properties. This process includes quenching an austenitic microstructure to form a controlled fraction of martensite, an isothermal treatment (partitioning step) aiming for the partitioning of carbon from martensite to austenite and a final quench to room temperature. This paper analyses the concurrent processes of carbon partitioning and martensite tempering during the partitioning step of a 0.3C-1.5Si-3.5Mn (wt.%) Q&P steel. The influence of the martensite tempering and the carbon partitioning on the tensile strength as well as on the uniform and post-uniform elongation of the developed Q&P microstructures is investigated.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

224-229

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F. Hajy Akbary, M. J. Santofimia, J. Sietsma, Optimizing mechanical properties of a 0.3C-1.5Si-3.5Mn quenched and partitioned steel, 4thInternational Conference on Ultrafine Grained and Nanostructured Materials (UFGNSM), 2013, Iran.

DOI: 10.4028/www.scientific.net/amr.829.100

Google Scholar

[2] J. G. Speer, F. C. R. Assunção, D. K. Matlock, D. V. Edmonds, The Quenching and Partitioning process: background and recent progress, Mat. Res. 8 (2005) 417-423.

DOI: 10.1590/s1516-14392005000400010

Google Scholar

[3] S. M. C. van Bohemen, Bainite and martensite start temperature calculated with exponential carbon dependence, Mat. Sci. and Tech. 28 (2012) 478-495.

DOI: 10.1179/1743284711y.0000000097

Google Scholar

[4] M. J. Santofimia, L. Zhao and J. Sietsma, Overview of mechanisms involved during the quenching and partitioning process in steels, Metall. Matter. Trans. A 42 (2011) 3620-3626.

DOI: 10.1007/s11661-011-0706-z

Google Scholar

[5] L. Cheng, C. M. Brakman, B. M. Korevaar, E. J. Mittemeijer, The tempering of iron-carbon martensite; dilatometric and calorimetric analysis, Metall. Trans. A 19 (1988) 2415-2426.

DOI: 10.1007/bf02645469

Google Scholar

[6] M. J. Santofimia, L. Zhao and J. Sietsma, Model for the interaction between interface migration and carbon diffusion during annealing of martensite–austenite microstructures in steels, Scripta Mater. 59 (2008) 159–162.

DOI: 10.1016/j.scriptamat.2008.02.045

Google Scholar

[7] M. J. Santofimia, J. G. Speer, A. J. Clarke, L. Zhao, J. Sietsma, Influence of interface mobility on the evolution of austenite–martensite grain assemblies during annealing, Acta Mater. 57 (2009) 4548–4557.

DOI: 10.1016/j.actamat.2009.06.024

Google Scholar

[8] F. Hajy Akbary, M. J. Santofimia, J. Sietsma, Elastic strain measurement of miniature tensile specimens, Exp. Mech.

DOI: 10.1007/s11340-013-9785-7

Google Scholar

[9] F. Hajy Akbary, M. J. Santofimia, J. Sietsma, Specimen size effects on the tensile behaviour of various steels, Proc. of the 2nd International Conference of Small Sample Test Technique conference (SSTT), Ostrava, Czech Republic, 2012, pp.233-238.

Google Scholar