Thermomechanical Ageing of Copper-Clad Aluminum Wires Submitted to Creep Test Conditions

Article Preview

Abstract:

Creep tests were performed on copper-clad aluminum wires at 423 K and different stresses to cover potential operating load ranges in automotive industry. The lifetime of the wires is strongly dependent on the existence of an initial heat treatment and on the applied stress. It can be correlated with the formation of the three intermetallics Al2Cu, AlCu and Al4Cu9 identified by TEM diffraction. All results are discussed to understand mechanisms that could lead to the embrittlement of copper-clad aluminum wires by creep.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

207-212

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] V. Bokshitskii, A. Glezer, E. Zakharov, G. Sveshnikova, Structure and electrical properties of heat-resistant bimetallic conductors, Met. Sci. Heat. Treat., 39 (1997) 38-41.

DOI: 10.1007/bf02467210

Google Scholar

[2] G. Heness, R. Wuhrer, W.Y. Yeung, Effect of annealing on the interfacial structure of aluminum-copper joints, Mater. Sci. Eng. A, 483-484 (2008) 740-742.

DOI: 10.1016/j.msea.2006.09.184

Google Scholar

[3] X. Li, G. Zu, P. Wang, Effect of strain rate on tensile performance of Al/Cu/Al laminated composites produced by asymmetrical roll bonding, Mater. Sci. Eng. A, 575 (2013) 61-64.

DOI: 10.1016/j.msea.2013.03.056

Google Scholar

[4] S. Berski, H. Dyja, A. Maranda, J. Nowaczewski, G. Banaszek, Quality of bimetal Al-Cu joint after explosive cladding, J. Mat. Proc. Techn., 177 (2006) 582-586.

DOI: 10.1016/j.jmatprotec.2006.04.107

Google Scholar

[5] T. Sapanathan, S. Khoddam, S.H. Zahiri, Spiral extrusion of aluminum/copper composite for future manufacturing of hybrid rods: A study of bond strength and interfacial characteristics, J. Alloy. Compd, 571 (2013) 85-92.

DOI: 10.1016/j.jallcom.2013.03.210

Google Scholar

[6] C.J. Hang, C.Q. Wang, M. Mayer, Y.H. Tian, Y. Zhou, H.H. Wang, Growth behavior of Cu/Al intermetallic compounds and cracks in copper ball bonds during isothermal aging, Microelec. Rel., 48 (2008) 416-424.

DOI: 10.1016/j.microrel.2007.06.008

Google Scholar

[7] M. Braunovic, N. Alexandrov, Intermetallic compounds at aluminum-to-copper electrical interfaces: effect of temperature and electric current, IEEE Trans Comp. Pack. Manufact. Techn., 17 (1994) 78-84.

DOI: 10.1109/95.296372

Google Scholar

[8] W.-B. Lee, K.-S. Bang, S.-B. Jung, Effects of intermetallic compound on the electrical and mechanical properties of friction welded Cu/Al bimetallic joints during annealing J. Alloy. Compd., 390 (2005) 212-219.

DOI: 10.1016/j.jallcom.2004.07.057

Google Scholar

[9] K.Y. Rhee, W.Y. Han, H.J. Park, S.S. Kim, Fabrication of aluminum/copper clad composite using hot hydrostatic extrusion process and its material characteristics Mater. Sci. Eng. A, 384 (2004) 70-76.

DOI: 10.1016/j.msea.2004.05.051

Google Scholar

[10] T. Sasaki, R. Morris, G. Thompson, Y. Syarif, D. Fox, Formation of ultrafine copper grains in copper-clad aluminum wire, Scripta Mater. 63 (5) (2010) 488 – 491.

DOI: 10.1016/j.scriptamat.2010.05.010

Google Scholar

[11] F.H. Norton, The Creep of Steels at high Temperatures, McGraw-Hill, New York, 1929.

Google Scholar