Description of Surface Energy Anisotropy for BCC Metals

Article Preview

Abstract:

Surface energy anisotropy (SEA) has long been a hot topic in interface science as it has an important role in the interface/surface behaviours for crystalline phases. Most studies aim to determine the numerical values of the anisotropic surface energy in some particular orientations, but few investigate the whole orientation-dependent trend, or the morphology of the polar plot. The present work propose descriptions for SEA of both body centred cubic (BCC) and face centred cubic (FCC) metals by considering the interactions between an atom and its 1st, 2nd and 3rd nearest neighbouring (NN) atoms. The expression makes use of only three coefficients K1, K2 and K3 which are correspondent to the contribution of 1st, 2nd and 3rd NN interactions respectively. This allows estimation of surface energy for all crystallographic orientations if the values for (111), (100) and (110) orientations are provided. Matching of our model with modified analytical embedded-atom method (MAEAM) results demonstrates less than 0.5% average relative error. We also construct the polar plots of BCC metals based on our model and compare them with some other models.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

446-451

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Curiotto, H. Chien, H. Meltzman, S. Labat, P. Wynblatt, G.S. Rohrer, W.D. Kaplan, and D. Chatain, Copper crystals on the sapphire plane: orientation relationships, triple line ridges and interface shape equilibrium, J. Mater. Sci. 48 (2013) 3013-3026.

DOI: 10.1007/s10853-012-7080-0

Google Scholar

[2] R. V. Zucker, D. Chatain, U. Dahmen, S. Hagège, and W.C. Carter, New software tools for the calculation and display of isolated and attached interfacial-energy minimizing particle shapes, J. Mater. Sci. HTC (2012) 1-13 .

DOI: 10.1007/s10853-012-6739-x

Google Scholar

[3] H. Meltzman, D. Chatain, D. Avizemer, T.M. Besmann, and W.D. Kaplan, The equilibrium crystal shape of nickel, Acta Mater. 59 (2011) 3473-3483.

DOI: 10.1016/j.actamat.2011.02.021

Google Scholar

[4] J.S. Hong, W. Jo, K.J. Ko, N.M. Hwang, and D.Y. Kim, Equilibrium shape of nickel crystal, Philos. Mag. 89:32 (2009) 2989-2999.

DOI: 10.1080/14786430903164598

Google Scholar

[5] A.S. Barnard, X.M. Lin, and L.A. Curtiss, Equilibrium morphology of face-centered cubic gold nanoparticles >3nm and the shape changes induced by temperature, J. Phys. Chem. B. 109 (2005) 24465-24472.

DOI: 10.1021/jp054279n

Google Scholar

[6] D. Chatain, V. Ghetta, and P. Wynblatt, Equilibrium shape of copper crystals grown on sapphire, Interface Sci. 12 (2004) 7-18.

DOI: 10.1023/b:ints.0000012290.07441.a8

Google Scholar

[7] W. Luo, W. Hu, K. Su, and F. Liu, The calculation of surface free energy based on embedded atom method for solid nickel, Appl. Surf. Sci. 265 (2013) 375-378.

DOI: 10.1016/j.apsusc.2012.11.015

Google Scholar

[8] Y.N. Wen and J.M. Zhang, Surface energy calculation of the bcc metals by using the MAEAM, Com. Mat. Sci. 42 (2008) 281-285.

DOI: 10.1016/j.commatsci.2007.07.016

Google Scholar

[9] B. Lee and M. Baskes, Second nearest-neighbor modified embedded-atom-method potential, Phys. Rev. B. 62 (2000) 8564-8567.

DOI: 10.1103/physrevb.62.8564

Google Scholar

[10] R.L. Davidchack, J.R. Morris, and B.B. Laird, The anisotropic hard-sphere crystal-melt interfacial free energy from fluctuations, J. Chem. Phys. 125 (2006) 094710.

DOI: 10.1063/1.2338303

Google Scholar

[11] F. von der Lage and H. Bethe, A method for obtaining electronic eigenfunctions and eigenvalues in solids with an application to sodium, Phys. Rev. 71 (1947) 612-622.

DOI: 10.1103/physrev.71.612

Google Scholar

[12] V. Heinonen, A. Mijailović, C.V. Achim, T. Ala-Nissila, R.E. Rozas, J. Horbach, and H. Löwen, Bcc crystal-fluid interfacial free energy in Yukawa systems, J. Chem. Phys. 138 (2013) 044705.

DOI: 10.1063/1.4775744

Google Scholar

[13] A. Jaatinen, C. Achim, K. Elder, and T. Ala-Nissila, Thermodynamics of bcc metals in phase-field-crystal models, Phys. Rev. E 80 (2009) 031602.

DOI: 10.1103/physreve.80.031602

Google Scholar

[14] R.S. Qin and H.K.D.H. Bhadeshia, Phase-field model study of the effect of interface anisotropy on the crystal morphological evolution of cubic metals, Acta Mater. 57 (2009) 2210-2216.

DOI: 10.1016/j.actamat.2009.01.024

Google Scholar

[15] R.S. Qin and H.K.D.H. Bhadeshia, Phase-field model study of the crystal morphological evolution of hcp metals, Acta Mater. 57 (2009) 3382-3390.

DOI: 10.1016/j.actamat.2009.04.001

Google Scholar

[16] K.A. Wu and A. Karma, Phase-field crystal modelling of equilibrium bcc-liquid interfaces, Phys. Rev. B. 76 (2007) 184107.

DOI: 10.1103/physrevb.76.184107

Google Scholar

[17] Z. Yu and A. Flodström, Orientation of (1x1)-surface free energies of crystals, Surf. Sci. 401 (1998) 236-247.

DOI: 10.1016/s0039-6028(97)01084-4

Google Scholar