[1]
S. Curiotto, H. Chien, H. Meltzman, S. Labat, P. Wynblatt, G.S. Rohrer, W.D. Kaplan, and D. Chatain, Copper crystals on the sapphire plane: orientation relationships, triple line ridges and interface shape equilibrium, J. Mater. Sci. 48 (2013) 3013-3026.
DOI: 10.1007/s10853-012-7080-0
Google Scholar
[2]
R. V. Zucker, D. Chatain, U. Dahmen, S. Hagège, and W.C. Carter, New software tools for the calculation and display of isolated and attached interfacial-energy minimizing particle shapes, J. Mater. Sci. HTC (2012) 1-13 .
DOI: 10.1007/s10853-012-6739-x
Google Scholar
[3]
H. Meltzman, D. Chatain, D. Avizemer, T.M. Besmann, and W.D. Kaplan, The equilibrium crystal shape of nickel, Acta Mater. 59 (2011) 3473-3483.
DOI: 10.1016/j.actamat.2011.02.021
Google Scholar
[4]
J.S. Hong, W. Jo, K.J. Ko, N.M. Hwang, and D.Y. Kim, Equilibrium shape of nickel crystal, Philos. Mag. 89:32 (2009) 2989-2999.
DOI: 10.1080/14786430903164598
Google Scholar
[5]
A.S. Barnard, X.M. Lin, and L.A. Curtiss, Equilibrium morphology of face-centered cubic gold nanoparticles >3nm and the shape changes induced by temperature, J. Phys. Chem. B. 109 (2005) 24465-24472.
DOI: 10.1021/jp054279n
Google Scholar
[6]
D. Chatain, V. Ghetta, and P. Wynblatt, Equilibrium shape of copper crystals grown on sapphire, Interface Sci. 12 (2004) 7-18.
DOI: 10.1023/b:ints.0000012290.07441.a8
Google Scholar
[7]
W. Luo, W. Hu, K. Su, and F. Liu, The calculation of surface free energy based on embedded atom method for solid nickel, Appl. Surf. Sci. 265 (2013) 375-378.
DOI: 10.1016/j.apsusc.2012.11.015
Google Scholar
[8]
Y.N. Wen and J.M. Zhang, Surface energy calculation of the bcc metals by using the MAEAM, Com. Mat. Sci. 42 (2008) 281-285.
DOI: 10.1016/j.commatsci.2007.07.016
Google Scholar
[9]
B. Lee and M. Baskes, Second nearest-neighbor modified embedded-atom-method potential, Phys. Rev. B. 62 (2000) 8564-8567.
DOI: 10.1103/physrevb.62.8564
Google Scholar
[10]
R.L. Davidchack, J.R. Morris, and B.B. Laird, The anisotropic hard-sphere crystal-melt interfacial free energy from fluctuations, J. Chem. Phys. 125 (2006) 094710.
DOI: 10.1063/1.2338303
Google Scholar
[11]
F. von der Lage and H. Bethe, A method for obtaining electronic eigenfunctions and eigenvalues in solids with an application to sodium, Phys. Rev. 71 (1947) 612-622.
DOI: 10.1103/physrev.71.612
Google Scholar
[12]
V. Heinonen, A. Mijailović, C.V. Achim, T. Ala-Nissila, R.E. Rozas, J. Horbach, and H. Löwen, Bcc crystal-fluid interfacial free energy in Yukawa systems, J. Chem. Phys. 138 (2013) 044705.
DOI: 10.1063/1.4775744
Google Scholar
[13]
A. Jaatinen, C. Achim, K. Elder, and T. Ala-Nissila, Thermodynamics of bcc metals in phase-field-crystal models, Phys. Rev. E 80 (2009) 031602.
DOI: 10.1103/physreve.80.031602
Google Scholar
[14]
R.S. Qin and H.K.D.H. Bhadeshia, Phase-field model study of the effect of interface anisotropy on the crystal morphological evolution of cubic metals, Acta Mater. 57 (2009) 2210-2216.
DOI: 10.1016/j.actamat.2009.01.024
Google Scholar
[15]
R.S. Qin and H.K.D.H. Bhadeshia, Phase-field model study of the crystal morphological evolution of hcp metals, Acta Mater. 57 (2009) 3382-3390.
DOI: 10.1016/j.actamat.2009.04.001
Google Scholar
[16]
K.A. Wu and A. Karma, Phase-field crystal modelling of equilibrium bcc-liquid interfaces, Phys. Rev. B. 76 (2007) 184107.
DOI: 10.1103/physrevb.76.184107
Google Scholar
[17]
Z. Yu and A. Flodström, Orientation of (1x1)-surface free energies of crystals, Surf. Sci. 401 (1998) 236-247.
DOI: 10.1016/s0039-6028(97)01084-4
Google Scholar