[1]
T. Senuma. Present Status of and Future Prospects for Precipitation Research in the Steel Industry. ISIJ International. 2002; 42:1-12.
DOI: 10.2355/isijinternational.42.1
Google Scholar
[2]
R. Okamoto, A. Borgenstam, J. Agren. Interphase precipitation in niobium-microalloyed steels. Acta Mater. 2010; 58:4783-4790.
DOI: 10.1016/j.actamat.2010.05.014
Google Scholar
[3]
G. Miyamoto, R. Hori, B. Poorganji, T. Furuhara. Interphase Precipitation of VC and Resultant Hardening in V-added Medium Carbon Steels. ISIJ Int., 2011, 51:1733-1739.
DOI: 10.2355/isijinternational.51.1733
Google Scholar
[4]
H.W. Yen, C.Y. Huang, J.R. Yang. Characterization of interphase-precipitated nanometer-sized carbides in a Ti-Mo-bearing steel. Scripta Mater. 2009; 61:616-619.
DOI: 10.1016/j.scriptamat.2009.05.036
Google Scholar
[5]
Y. Funakawa, T. Shiozaki, K. Tomita, T. Yamamoto, E. Maeda. Development of high strength hot-rolled sheet steel consisting of ferrite and nanometer-sized carbides. ISIJ Int. 2004; 44:1945-1951.
DOI: 10.2355/isijinternational.44.1945
Google Scholar
[6]
K. Seto, Y. Funakawa, S. Kaneko. Hot rolled high strength steels for suspension and chassis parts ''Nanohiten'' and "BHT ® steel". JFE Technical Report. 2007; 10:19-25.
Google Scholar
[7]
Y. Funakawa, K. Seto. Stabilization in strength of hot-rolled sheet steel strengthened by nanometer-sized carbides. Tetsu to Hagane-Journal of the Iron and Steel Institute of Japan 2007; 93:49-56.
DOI: 10.2355/tetsutohagane.93.49
Google Scholar
[8]
I.B. Timokhina, P.D. Hodgson, S.P. Ringer, R.K. Zheng, E.V. Pereloma. Precipitate characterisation of an advanced high-strength low-alloy (HSLA) steel using atom probe tomography. Scripta Mater. 2007; 56: 601-604.
DOI: 10.1016/j.scriptamat.2006.12.018
Google Scholar
[9]
C.Y. Chen, H.W. Yen, F.H. Kao, W.C. Li, C.Y. Huang, J.R. Yang, S.H. Wang. Precipitation hardening of high-strength low-alloy steels by nanometer-sized carbides. Mater. Sci. Eng. A. 2009; 499:162-166.
DOI: 10.1016/j.msea.2007.11.110
Google Scholar
[10]
H.W. Yen, C.Y. Chen, T.Y. Wang, C.Y. Huang, J.R. Yang. Orientation relationship transition of interphase-precipiated nanometer-sized TiC carbides in a Ti-bearing steel. Mater Sci Technol. 2010; 26:421-430.
DOI: 10.1179/026708309x12512744154207
Google Scholar
[11]
J.H. Jang, C. Lee, Y. Heo, D. Suh. Stability of (Ti, M)C (M=Nb, V, Mo and W) carbide in steels using first-principles calculations. Acta Mater. 2012; 60; 208-217.
DOI: 10.1016/j.actamat.2011.09.051
Google Scholar
[12]
Y. Ohmori, R.W.K. S Honeycombe, Proceedings of ICSTIS (suppl.) Transactions Iron and Steel Institute of Japan. 1971; 11:1160-1165.
Google Scholar
[13]
G. Krauss, S.W. Thompson, "Ferritic Microstructures in Continuously Cooled LowCarbon and Ultralow-Carbon Steels. ISIJ International. 1995; 35:937-945.
DOI: 10.2355/isijinternational.35.937
Google Scholar
[14]
X. Deng, Z. Wang, R. D. K. Misra, Y. Li, G. Wang. Transformation and precipitation behaviour of Ti–Mo bearing high strength medium-carbon steel. Mater Sci Technol, 2013; 29:1111-1117.
DOI: 10.1179/1743284713y.0000000290
Google Scholar
[15]
Y. Ohmori. Isothermal decomposition of an Fe-C-B austenite. Trans. ISIJ, 1971, 11, 339-348.
Google Scholar
[16]
S. Shanmugam, N.K. Ramisetti, R.D.K. Misra, T. Mannering , D. Panda , S. Jansto. Effect of cooling rate on the microstructure and mechanical properties of Nb-microalloyed steels. Mater. Sci. Eng. A. 2007; 460-461:335-343.
DOI: 10.1016/j.msea.2007.01.054
Google Scholar