Mechanical Properties and Precipitation Behavior of Ti-Mo Microalloyed Medium-Carbon Steel during Ultrafast Cooling Process

Article Preview

Abstract:

We describe here the mechanical property evolution and precipitation hardening behavior under different cooling conditions including ultrafast cooling (UFC) + air cooling process and accelerated cooling (ACC) + air cooling process in a Ti-Mo microalloyed medium carbon steel is described here. The results demonstrate that the cooling procedure after hot rolling has a significant influence on the mechanical properties of the microalloyed steel. The yield strength and tensile strength that were obtained by ultrafast cooling (UFC) + air cooling process were higher than those from accelerated cooling (ACC) + air cooling process, while the elongation was slightly reduced. Microstructural characterization indicated that grain refinement and precipitation hardening were the primary reasons for the increase in strength of the experimental steel. Ultrafast cooling increased the density of dislocations and refined the grain size. Average size of precipitates containing Ti and Mo was 3~6 nm in ultrafast cooling (UFC) + air cooling process, while average precipitate size obtained by accelerated cooling (ACC) + air cooling process was 6~9 nm. Keywords: Ti-Mo medium-carbon steel; Precipitation; Ultra fast cooling process; accelerated cooling process

You might also be interested in these eBooks

Info:

Periodical:

Pages:

86-93

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Senuma. Present Status of and Future Prospects for Precipitation Research in the Steel Industry. ISIJ International. 2002; 42:1-12.

DOI: 10.2355/isijinternational.42.1

Google Scholar

[2] R. Okamoto, A. Borgenstam, J. Agren. Interphase precipitation in niobium-microalloyed steels. Acta Mater. 2010; 58:4783-4790.

DOI: 10.1016/j.actamat.2010.05.014

Google Scholar

[3] G. Miyamoto, R. Hori, B. Poorganji, T. Furuhara. Interphase Precipitation of VC and Resultant Hardening in V-added Medium Carbon Steels. ISIJ Int., 2011, 51:1733-1739.

DOI: 10.2355/isijinternational.51.1733

Google Scholar

[4] H.W. Yen, C.Y. Huang, J.R. Yang. Characterization of interphase-precipitated nanometer-sized carbides in a Ti-Mo-bearing steel. Scripta Mater. 2009; 61:616-619.

DOI: 10.1016/j.scriptamat.2009.05.036

Google Scholar

[5] Y. Funakawa, T. Shiozaki, K. Tomita, T. Yamamoto, E. Maeda. Development of high strength hot-rolled sheet steel consisting of ferrite and nanometer-sized carbides. ISIJ Int. 2004; 44:1945-1951.

DOI: 10.2355/isijinternational.44.1945

Google Scholar

[6] K. Seto, Y. Funakawa, S. Kaneko. Hot rolled high strength steels for suspension and chassis parts ''Nanohiten'' and "BHT ® steel". JFE Technical Report. 2007; 10:19-25.

Google Scholar

[7] Y. Funakawa, K. Seto. Stabilization in strength of hot-rolled sheet steel strengthened by nanometer-sized carbides. Tetsu to Hagane-Journal of the Iron and Steel Institute of Japan 2007; 93:49-56.

DOI: 10.2355/tetsutohagane.93.49

Google Scholar

[8] I.B. Timokhina, P.D. Hodgson, S.P. Ringer, R.K. Zheng, E.V. Pereloma. Precipitate characterisation of an advanced high-strength low-alloy (HSLA) steel using atom probe tomography. Scripta Mater. 2007; 56: 601-604.

DOI: 10.1016/j.scriptamat.2006.12.018

Google Scholar

[9] C.Y. Chen, H.W. Yen, F.H. Kao, W.C. Li, C.Y. Huang, J.R. Yang, S.H. Wang. Precipitation hardening of high-strength low-alloy steels by nanometer-sized carbides. Mater. Sci. Eng. A. 2009; 499:162-166.

DOI: 10.1016/j.msea.2007.11.110

Google Scholar

[10] H.W. Yen, C.Y. Chen, T.Y. Wang, C.Y. Huang, J.R. Yang. Orientation relationship transition of interphase-precipiated nanometer-sized TiC carbides in a Ti-bearing steel. Mater Sci Technol. 2010; 26:421-430.

DOI: 10.1179/026708309x12512744154207

Google Scholar

[11] J.H. Jang, C. Lee, Y. Heo, D. Suh. Stability of (Ti, M)C (M=Nb, V, Mo and W) carbide in steels using first-principles calculations. Acta Mater. 2012; 60; 208-217.

DOI: 10.1016/j.actamat.2011.09.051

Google Scholar

[12] Y. Ohmori, R.W.K. S Honeycombe, Proceedings of ICSTIS (suppl.) Transactions Iron and Steel Institute of Japan. 1971; 11:1160-1165.

Google Scholar

[13] G. Krauss, S.W. Thompson, "Ferritic Microstructures in Continuously Cooled LowCarbon and Ultralow-Carbon Steels. ISIJ International. 1995; 35:937-945.

DOI: 10.2355/isijinternational.35.937

Google Scholar

[14] X. Deng, Z. Wang, R. D. K. Misra, Y. Li, G. Wang. Transformation and precipitation behaviour of Ti–Mo bearing high strength medium-carbon steel. Mater Sci Technol, 2013; 29:1111-1117.

DOI: 10.1179/1743284713y.0000000290

Google Scholar

[15] Y. Ohmori. Isothermal decomposition of an Fe-C-B austenite. Trans. ISIJ, 1971, 11, 339-348.

Google Scholar

[16] S. Shanmugam, N.K. Ramisetti, R.D.K. Misra, T. Mannering , D. Panda , S. Jansto. Effect of cooling rate on the microstructure and mechanical properties of Nb-microalloyed steels. Mater. Sci. Eng. A. 2007; 460-461:335-343.

DOI: 10.1016/j.msea.2007.01.054

Google Scholar