Effect of Tensile Twinning on Low Temperature Shear Formability of Mg-3Al-1Zn Alloy

Article Preview

Abstract:

Mg-3Al-1Zn (AZ31) alloy samples with different starting textures have been processed using Equal Channel Angular Processing (ECAP) at 150°C and 200°C. The common temperature limit for ECAP of wrought AZ31 alloys has been reduced from 200°C to 150°C by suppressing tensile twinning activity. Twinning activity was reduced by either changing the starting texture or increasing the temperature. A crystal plasticity model was utilized to gain a better insight into the operating deformation mechanisms during ECAP. Suppression of tensile twinning and pronounced prismatic slip activity resulted in a crack-free, homogeneous deformation at 150°C. In addition, twinning, when exists, was shown to have a significant effect on the promotion of DRX and shear band formation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

108-113

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Mukai, M. Yamanoi, H. Watanabe, and K. Higashi, Scripta Materialia, 2001. 45(1): pp.89-94.

DOI: 10.1016/s1359-6462(01)00996-4

Google Scholar

[2] M. Al-Maharbi, I. Karaman, I. J. Beyerlein, D. Foley, K. T. Hartwig, L. J. Kecskes, and S. N. Mathaudhu, Materials Science and Engineering: A, 2011. 528(25–26): pp.7616-7627.

DOI: 10.1016/j.msea.2011.06.043

Google Scholar

[3] S. R. Agnew, P. Mehrotra, T. M. Lillo, G. M. Stoica, and P. K. Liaw, Acta Materialia, 2005. 53(11): pp.3135-3146.

DOI: 10.1016/j.actamat.2005.02.019

Google Scholar

[4] F. Kang, J. T. Wang, and Y. Peng, Materials Science and Engineering: A, 2008. 487(1–2): pp.68-73.

Google Scholar

[5] T. Al-Samman and G. Gottstein, Materials Science and Engineering: A, 2008. 490(1–2): pp.411-420.

Google Scholar

[6] S. R. Agnew and Ö. Duygulu, International Journal of Plasticity, 2005. 21(6): pp.1161-1193.

Google Scholar

[7] I. J. Beyerlein, R. A. Lebensohn, and C. N. Tomé, Materials Science and Engineering: A, 2003. 345(1–2): pp.122-138.

Google Scholar

[8] A. Jain and S. R. Agnew, Materials Science and Engineering: A, 2007. 462(1–2): pp.29-36.

Google Scholar

[9] O. Sitdikov and R. Kaibyshev, Materials Transactions, 2001. 42(9): pp.1928-1937.

Google Scholar

[10] A. G. Beer and M. R. Barnett, Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2007. 38(8): pp.1856-1867.

Google Scholar

[11] S. E. Ion, F. J. Humphreys, and S. H. White, Acta Metallurgica, 1982. 30(10): pp.1909-1919.

Google Scholar

[12] M. Igarashi, M. Khantha, and V. Vitek, Philosophical Magazine B-Physics of Condensed Matter Statistical Mechanics Electronic Optical and Magnetic Properties, 1991. 63(3): pp.603-627.

Google Scholar

[13] A. G. Beer and M. R. Barnett, Metallurgical and Materials Transactions A, 2007. 38(8): pp.1856-1867.

Google Scholar

[14] A. Galiyev, R. Kaibyshev, and G. Gottstein, Acta Materialia, 2001. 49(7): pp.1199-1207.

DOI: 10.1016/s1359-6454(01)00020-9

Google Scholar

[15] M. M. Myshlyaev, H. J. McQueen, A. Mwembela, and E. Konopleva, Materials Science and Engineering: A, 2002. 337(1–2): pp.121-133.

DOI: 10.1016/s0921-5093(02)00007-2

Google Scholar