[1]
Ouchi C. Development of steel plates by intensive use of TMCP and direct quenching processes. ISIJ international, 2001, 41(6): 542-553.
DOI: 10.2355/isijinternational.41.542
Google Scholar
[2]
FUJIBAYASHI A, OMATA K. JFE steel's advanced manufacturing technologies for high performance steel plates. JFE technical report, 2005, 5 10.
Google Scholar
[3]
Q.Y. Sha, G.Y. Li, L.F. Qiao, P.Y. Yan, Effect of cooling rate and coiling temperature on precipitate in ferrite of a Nb-V-Ti micro alloyed strip steel, Journal of Iron and Steel Research, International 14 (5) (2007): 316-319.
DOI: 10.1016/s1006-706x(08)60102-8
Google Scholar
[4]
Rodrigues P C M, Pereloma E V, Santos D B. Mechanical properities of an HSLA bainitic steel subjected to controlled rolling with accelerated cooling. Materials Science and Engineering A, 2000, 283(1):136-143.
DOI: 10.1016/s0921-5093(99)00795-9
Google Scholar
[5]
Chen J, Tang S, Liu Z Y, et al. Microstructural characteristics with various cooling paths and the mechanism of embrittlement and toughening in low-carbon high performance bridge steel. Materials Science and Engineering: A, 2012, 559(1)241-249.
DOI: 10.1016/j.msea.2012.08.091
Google Scholar
[6]
Zhuang L I, Di WU, Wei LÜ. Effects of Rolling and Cooling Conditions on Microstructure and Mechanical Properties of Low Carbon Cold Heading Steel. Journal of Iron and Steel Research, International, 2012, 19(11): 64-70.
DOI: 10.1016/s1006-706x(13)60022-9
Google Scholar
[7]
Liu E, Peng L, Yuan G, et al. Advanced run-out table cooling technology based on ultra fast cooling and laminar cooling in hot strip mill. Journal of Central South University, 2012, 19: 1341-1345.
DOI: 10.1007/s11771-012-1147-6
Google Scholar
[8]
Tian Y, Tang S, Wang B. X, Wang Z. D, Wang G. D, Development and industrial application of ultra-fast cooling technology. Sci China Ser E. 2012, 55(6):1566-1571.
DOI: 10.1007/s11431-012-4744-6
Google Scholar
[9]
Wang G. D, 5th International Symposium on Advanced Structural Steels and New Rolling Technologies, Shenyang , 2008:1-7.
Google Scholar
[10]
Wang G D, New generation TMCP and innovative hot rolling process. J Neu (Nat Sci), 2009, 30(7): 913-922.
Google Scholar
[11]
Azuma T, Hoshino T. The Radial Flow of a Thin Liquid Film, Part 2: Film Thickness. Trans. Japan Soc. Mech. Engrg, 1984, 50: 982.
Google Scholar
[12]
Fitzgerald J A, Garimella S V. A study of the flow field of a confined and submerged impinging jet [J]. International journal of heat and mass transfer, 1998, 41(8): 1025-1034.
DOI: 10.1016/s0017-9310(97)00205-6
Google Scholar
[13]
Karwa N, Gambaryan-Roisman T, Stephan P, et al. Experimental investigation of circular free-surface jet impingement quenching: Transient hydrodynamics and heat transfer. Experimental Thermal and Fluid Science, 2011, 35(7): 1435-1443.
DOI: 10.1016/j.expthermflusci.2011.05.011
Google Scholar
[14]
Haustein H D, Tebrügge G, Rohlfs W, et al. Local heat transfer coefficient measurement through a visibly-transparent heater under jet-impingement cooling. International Journal of Heat and Mass Transfer, 2012, 55(23-24):6410-6424.
DOI: 10.1016/j.ijheatmasstransfer.2012.06.029
Google Scholar
[15]
Omar A M T, Hamed M S, Shoukri M. Modeling of nucleate boiling heat transfer under an impinging free jet. International Journal of Heat and Mass Transfer, 2009, 52(23): 5557-5566.
DOI: 10.1016/j.ijheatmasstransfer.2009.06.025
Google Scholar
[16]
Bhattacharya P, Samanta A N, Chakraborty S. Spray evaporative cooling to achieve ultra fast cooling in runout table. International journal of thermal sciences, 2009, 48(9): 1741-1747.
DOI: 10.1016/j.ijthermalsci.2009.01.015
Google Scholar