Degradation of Polymer Solar Cells Based on P3HT:PCBM System

Article Preview

Abstract:

The degradation of the performance of the polymer solar cell based on the blend structures system of poly (3-hexylthiophene) (P3HT) and [6,-phenyl C61-butyric acid methyl ester (PCBM) is investigated. This study uses UV-vis absorption spectra, photoluminescence (PL) spectra, charge-transport dark J-V curve chart to explicate the reason for the degradation of the performance of P3HT:PCBM photovoltaic cells. Solar cell performance is degraded primarily through loss in short-circuit current density (Jsc) and fill factor (FF), the reduction in the Jsc and FF of the device is most likely to be due to the formation of the charge transfer complex, deep traps and destruction of the-conjugated system in the degraded P3HT:PCBM device. The exposure to oxygen and photo-oxidation lead to the emergence of these factors of the device performance degradation. Keywords: Degradation; Performance; Solar cells; P3HT: PCBM

You might also be interested in these eBooks

Info:

Periodical:

Pages:

193-199

Citation:

Online since:

April 2014

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Cowan S R, Banerji N, Leong W L, Heeger A J. Charge Formation, Recombination, and Sweep-Out Dynamics in Organic Solar Cells. Adv Funct Mater, 2012, 22(6): 1116 -1128.

DOI: 10.1002/adfm.201101632

Google Scholar

[2] He Z C, Zhong C M, Su S J, Xu M, Wu H B, Cao Y. Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure. Nat Photon, 2012, 6(9) : 591-595.

DOI: 10.1038/nphoton.2012.190

Google Scholar

[3] Peet J, Heeger A J, Bazan G. C. Plastic, Solar Cells: Self-Assembly of Bulk Heterojunction Nanomaterials by Spontaneous Phase Separation. Accounts of Chemical Research, 2009, 42 (11): 1700-1708.

DOI: 10.1021/ar900065j

Google Scholar

[4] Yu H Z, Peng J B. Performance and lifetime improvement of polymer/fullerene blend photovoltaic cells with a C60 interlayer. Org Electron, 2008, 9 (6): 1022-1025.

DOI: 10.1016/j.orgel.2008.07.010

Google Scholar

[5] Liang Y, Xu Z, Xia J, Tsai S, Wu Y, Li G., Ray C, Yu L. For the Bright Future-Bulk Heterojunction Polymer Solar Cells with Power Conversion Efficiency of 7. 4%. Adv Mater, 2010, 22 (20): E135-E138.

DOI: 10.1002/adma.200903528

Google Scholar

[6] You J B, Li X H, Xie F X, Sha W, Kwong J H W, Li G, Choy W C H, Yang Y. Surface Plasmon and Scattering-Enhanced Low-Bandgap Polymer Solar Cell by a Metal Grating Back Electrode. Adv Energy Mater, 2012, 2(10): 1203-1207.

DOI: 10.1002/aenm.201200108

Google Scholar

[7] Service R F, Outlook Brightens for Plastic Solar Cells. Science, 2011, 332(6027), 293-293.

DOI: 10.1126/science.332.6027.293

Google Scholar

[8] You J B, Chen C C, Dou L T, Murase S, Duan H S, Hawks S A, Xu T, Son H J, Yu L P, Li G., Yang Y. Metal Oxide Nanoparticles as an Electron-Transport Layer in High-Perfo -rmance and Stable Inverted Polymer Solar Cells. Adv Mater, 2012, 24(38): 5267-5272.

DOI: 10.1002/adma.201201958

Google Scholar

[9] Shrotriya V, Ouyang J, Tseng R J, Li G, Yang Y, Chem. Phys. Lett. 2005, 411 (1-3) 138-143.

Google Scholar

[10] Grossiord N, Kroon J M, Andriessen R, Blom P W M. Degradation mechanisms in organic photovoltaic devices. Org Electron. 2012, 13(3): 432-456.

DOI: 10.1016/j.orgel.2011.11.027

Google Scholar

[11] Hintz H, Egelhaaf H J, Luer L, Hauch J A, Peisert H, ChasséT. Photodegradation of P3HT-A Systematic Study of Environmental Factors. Chemistry of Materials 2011, 23 (2): 145-154.

DOI: 10.1021/cm102373k

Google Scholar

[12] Manceau M, Bundgaard E, Carlé J E, Hagemann O, Helgesen M, Sandergaard R, Jorgensen M, Krebs F C. Photochemical stability of pi-conjugated polymers for polymer solar cells: a rule of thumb. J Mater Chem, 2011, 21 (12): 4132-4141.

DOI: 10.1039/c0jm03105d

Google Scholar

[13] Rivaton A, Chambon S, Manceau M, Gardette J L, Lemaître N, Guillerez S. Light -induced degradation of the active layer of polymer-based solar cells. Polym Degrad Stab, 2010, 95 (3): 278-284.

DOI: 10.1016/j.polymdegradstab.2009.11.021

Google Scholar

[14] Peters C H, Sachs-Quintana I T, Mateker W R, Heumueller T, Rivnay J, Noriega R, Beiley Z M, Hoke E T, Salleo A, McGehee M D, The Mechanism of Burn-in Loss in a High Efficiency Polymer Solar Cell. Adv Mater, 2012, 24 (5): 663-675.

DOI: 10.1002/adma.201103010

Google Scholar

[15] Hintz H, Egelhaaf H J, Peisert H, Chasse T, Photo-oxidation and ozonization of poly(3-hexylthiophene) thin films as studied by UV/VIS and photoelectron spectroscopy. Polymer Degradation and Stability, 2010, 95(5): 818-825.

DOI: 10.1016/j.polymdegradstab.2010.02.004

Google Scholar

[16] Hintz H, Sessler C, Peisert H, Egelhaaf H J, Chasse T, Wavelength-Dependent Pathways of Poly-3-hexylthiophene Photo-Oxidation. Chem Mater, 2012, 24(14): 2739-2743.

DOI: 10.1021/cm3008864

Google Scholar

[17] Schafferhans J, Baumann A, Deibel C, Dyakonov V. Trap distribution and the impact of oxygen-induced traps on the charge transport in poly(3-hexylthiophene). Appl Phys Lett, 2008, 93 (9): 093303-093309.

DOI: 10.1063/1.2978237

Google Scholar

[18] Zhokhavets U, Erb T, Hoppe H, Gobsch G., Sariciftci N S. Effect of annealing of poly(3-hexylthiophene)/fullerene bulk heterojunction composites on structural and optical properties. Thin Solid Films, 2006, 496 (2): 679-681.

DOI: 10.1016/j.tsf.2005.09.093

Google Scholar

[19] Deschler F, De Sio A, Hauff E V, Kutka P, Sauermann T, Egelhaaf H J, Hauch J, Da Como E. The Effect of Ageing on Exciton Dynamics, Charge Separation, and Recombination in P3HT/PCBM Photovoltaic Blends. Adv Funct Mater, 2012, 22 (7): 1461-1469.

DOI: 10.1002/adfm.201101923

Google Scholar

[20] Seemann A, Sauermann T, Lungenschmied C, Armbruster O, Bauer S, Egelhaaf H J, Hauch J, Reversible and irreversible degradation of organic solar cell performance by oxygen. Solar Energy, 2011, 85 (6): 1238-1249.

DOI: 10.1016/j.solener.2010.09.007

Google Scholar