Quasi-Classical Trajectory Study of the Scalar Properties of the Reaction N(4S)+H2(v=0,1,2,3; j=0)→NH+H

Article Preview

Abstract:

Quasi-classical trajectory dynamical calculations of the title reactions have been performed on an accurate NH2 potential energy surface [Poveda LA, Varandas AJC, Phys Chem Chem Phys 7:2867,2005] over the collision energy range of 25-80 kcal mol-1. The reaction cross sections, variation of internuclear distances of N-Ha, N-Hb and Ha-Hb, and the reaction rate constants are reported for various initial vibrational and rotational states of H2 (v=0-3; j=0) molecules. The reaction cross section in the ground vibrational state of H2 and the rate constant over the thermal distribution of initial vibrational states of H2 are compared with other theoretical results and existing experimental results in the literature, showing good agreement.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

227-232

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. F. Davidson, R. K. Hanson, High temperature reaction rate coefficients derived from N-atom ARAS measurements and excimer photolysis of NO, Int. J. Chem. Kinet. 22 (1990) 843-861.

DOI: 10.1002/kin.550220805

Google Scholar

[2] M. Koshi, M. Yoshimura, K. Fukuda, etc. Reactions of N(4S) atoms with NO and H2 , J. Chem. Phys. 93 (1990) 8703-8708.

Google Scholar

[3] Toshiyuki Takayanagi, Yuzuru Kurosaki, Keiichi Yokoyama. Ab initio molecular orbital calculations of potential energy surfaces for the N(4S, 2D, 2P)+H2 reactions. Chem. Phys. Lett. 321 (2000)106-112.

DOI: 10.1016/s0009-2614(00)00329-8

Google Scholar

[4] Zhang Shao Wen, Thanh N. Truong. Direct ab initio dynamics studies of N+H2↔NH+H reaction, J. Chem. Phys. 113(2000)6149-6154.

DOI: 10.1063/1.1308544

Google Scholar

[5] Ronald Z. Pascual, George C. Schatz, Gÿorgÿ Lendvay, etc. Quasiclassical trajectory and transition state theory studies of the N(4S)+H2↔NH(X3Σ-)+H reaction [J]. J. Chem. Phys.A. 106(2002) 4125-4136.

DOI: 10.1021/jp0133079

Google Scholar

[6] L. A. Poveda, A. J. C. Varandas. Repulsive double many-body expansion potential energy surface for the reactions N(4S)+H2↔NH(X3Σ-)+H from accurate ab initio calculations, Phy. Chem. Chem. Phys. 7(2005)2867-2873.

DOI: 10.1039/b505590c

Google Scholar

[7] Hans-Joachim Werner, Peter J. Knowles. An efficient internally contracted multiconfiguration -reference configuration interaction method, J. Chem Phys. 88(1988) 5803-5814.

DOI: 10.1063/1.455556

Google Scholar

[8] Peter J. Knowles, Hans-Joachim Werner. An efficient method for the evaluation of coupling coefficients in configuration interaction calculations, Chem. Phys. Lett. 145(1988) 514-522.

DOI: 10.1016/0009-2614(88)87412-8

Google Scholar

[9] A. J. C. Varandas. Intermolecular and intramolecular potentials: topographical aspects, calculation, and functional representation via a double many-body expansion method, Adv. Chem. Phys. 74(1988)255-338.

DOI: 10.1002/9780470141236.ch2

Google Scholar

[10] Zhang Juan, Chu Tian Shu, Dong Shun Le, etc. Influence of isotope effects on the stereodynamics of the N(4S)+H2 →NH+H reactive system: a QCT study, Chin. Phys. Lett. 28(2011) 093403.

DOI: 10.1088/0256-307x/28/9/093403

Google Scholar

[11] Han Boran, Yang Huan, Zheng Yujun, etc. Quasi-classical trajectory and quantum mechanics study of the reaction H(2S) + NH → N(4S) + H2, Chem. Phys. Lett. 493(2010) 225-228.

DOI: 10.1016/j.cplett.2010.05.049

Google Scholar

[12] Yu Yong Jiang, Xu Qiang, Xu Xiu Wei. Influence of rotational excitation and collision energy on the stereo dynamics of the reaction: N(4S)+H2 (v= 0, j= 0, 2, 5, 10)→NH(X3Σ-)+H, Chin. Phys.B. 20( 2011)123402.

DOI: 10.1088/1674-1056/20/12/123402

Google Scholar

[13] Yu Yong Jiang, Wang De Hua, Feng Shu Xiang, etc. Influence of vibrational excitation and collision energy on the stereo dynamics of the reactions: N(4S)+H2(v=0-3, j=0)→NH(X3Σ-)+H, J. Theor. Comput. Chem. 11(2012)763-780.

Google Scholar

[14] Han Ke Li, He Guo Zhong, Lou Nan Quan. Effect of location of energy barrier on the product alignment of reaction A+BC, J. Chem. Phys. 105(1996) 8699-8704.

DOI: 10.1063/1.472651

Google Scholar

[15] Han Boran, Zong Fu Jian, Wang Chun Lei, etc. Product polarization on the 3A" electronic state in the H+FO reaction and its isotope variant, Chem. Phys. 374(2010) 94-98.

DOI: 10.1016/j.chemphys.2010.06.028

Google Scholar