Basicity and Crystal Phase of Mesoporous K2O-MgO/ZrO2-La2O3 Catalyst

Article Preview

Abstract:

A new solid base, mesoporous K2O-MgO/ZrO2-La2O3, was prepared by hydrothermal and immersion process using a cationic surfactant C16H33(CH3)3NBr (CTAB) as template.The samples were characterized by N2 adsorption-desorption, X-ray diffraction(XRD), Raman spectroscope and CO2 temperature programmed desorption(CO2-TPD). XRD and Raman spectra indicated that the catalyst calcined at 600°C and 700 °C remained surface and bulk tetragonal phase and good mesoporous characteristics when the content of K2O is less than 0.5. While the monoclinic phase is appeared on catalyst surface when the content of K2O is more than 0.5 calcined at 700 °C. CO2-TPD proves that there are two adsorption states at high temperature corresponding to super alkaline sites of K2O and undecomposed KNO3. The catalyst with 0.4 mol ratio of K2O to ZrO2 calcined at 700 °C showed higher activity in the synthesis of di-2-ethylhexyl carbonate (DEHC) from dimethyl carbonate (DMC) and 2-ethylhexanol (EHOH).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

269-274

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S.G. Liu, X.L. Zhang, J.P. Li, et al, Preparation and application of stabilized mesoporous MgO–ZrO2 solid base, Catalysis Communications. 9 (2008) 1527-1532.

DOI: 10.1016/j.catcom.2007.12.007

Google Scholar

[2] M. Mamak, N. Coombs, G. Ozin, Self-Assembling solid oxide fuel cell materials: mesoporous yttria-zirconia and metal-yttria-zirconia solid solutions, J. Amer. Chem. Soc. 122 (2000) 8932-8939.

DOI: 10.1021/ja0013677

Google Scholar

[3] H. Verweij, Nanocrystalline and Nanoporous Ceramics, Adv. Mater. 10 (1998) 1483-1486.

DOI: 10.1002/(sici)1521-4095(199812)10:17<1483::aid-adma1483>3.0.co;2-j

Google Scholar

[4] W.L. Xie, H. Peng, L.G. Chen, Transesterification of soybean oil catalyzed by potassium lead on alumina as a solid-base catalyst, Applied Catalysis A: General. 300 (2006) 67-74.

DOI: 10.1016/j.apcata.2005.10.048

Google Scholar

[5] S. Furuta, H. Matsuhashi, K. Arata, Biodiesel fuel production with solid amorphous-zirconia catalysis in fixed bed reactor, Biomass and Bioenergy. 30 (2006) 870-873.

DOI: 10.1016/j.biombioe.2005.10.010

Google Scholar

[6] G. Pacheco, J.J. Fripiat, Physical chemistry of the thermal transformation of mesoporous and microporous zirconia, J. Phys. Chem. B. 104 (2000) 11906-11911.

DOI: 10.1021/jp001455d

Google Scholar

[7] Y.J. Wang, Y.F. Ying, P. Fang, et al, PrOy-ZrO2 solid solution: characterization and catalytic oxidation of CO, Chinese Journal of Inorganic Chemistry. 7 (2006) 1251-1256.

Google Scholar

[8] S.G. Chen, Y.S. Yin, C.H. Zhou, Application and study on the mechanism of the phase-stabilized zirconia, Bulletin of the Chinese Ceramic SocIety. 3 (2004) 73-76.

Google Scholar

[9] Y.X. Zhu, W. Zhuang, D.E. Jiang, et al, The basicity and dispersion state of alkaline earth metal compounds on the surface of ZrO2, Chinese Journal of Catalysis. 21 (2000) 34-35.

Google Scholar

[10] Y. Ono, T. Baba, Selective reactions over solid base catalysts, Catalysis Today. 38 (1997) 321-337.

DOI: 10.1016/s0920-5861(97)81502-5

Google Scholar

[11] K. Tanabe, W.F. Hoelderich, Industrial application of solid acid-base catalysts, Applied Catalysis A: General. 181 (1999) 399-434.

DOI: 10.1016/s0926-860x(98)00397-4

Google Scholar

[12] G.D. Feng, W.M. Li, J.B. Pan, et al, Synthesis of Biodiesel with Solid base CaO/MgO as catalyst, Chinese Journal Of Applied Chemistry. 10 (2007) 1149-1152.

Google Scholar

[13] H. Hattori, Solid base catalysts: generation of basic sites and application to organic synthesis, Appl Catal A: General. 222 (2001) 247-259.

DOI: 10.1016/s0926-860x(01)00839-0

Google Scholar

[14] A. Stein, B.J. Melde, R.C. Schroden, Hybrid inorganic–organic mesoporous silicates-nanoscopic reactors coming of age, Adv. Mater. 12 (2000) 1403-1419.

DOI: 10.1002/1521-4095(200010)12:19<1403::aid-adma1403>3.0.co;2-x

Google Scholar

[15] M.E. Davis, Ordered porous materials for emerging applications, Nature. 417 (2002) 813-821.

DOI: 10.1038/nature00785

Google Scholar

[16] M. Rezaei, S.M. Alavi, S. Sahebdelfar, et al, Effect of process parameters on the synthesis of mesoporous nanocrystalline zirconia with triblock copolymer as template, Journal of Porous Materials. 15 (2008) 171-179.

DOI: 10.1007/s10934-007-9120-8

Google Scholar

[17] M. Rezaei, S.M. Alavi, S. Sahebdelfar, et al, A highly stable catalyst in methane reforming with carbon dioxide, Scripta Materialia. 61 (2009) 173–176.

DOI: 10.1016/j.scriptamat.2009.03.033

Google Scholar

[18] S.K. Das, M.K. Bhunia, A.K. Sinha, et al, Self-assembled mesoporous zirconia and sulfated zirconia nanoparticles synthesized by triblock copolymer as template, J. Phys. Chem. C. 113 (2009) 8918-8923.

DOI: 10.1021/jp9014096

Google Scholar

[19] F.Q. Zhu, Z.H. Wang, J.F. Xia, et al, Synthesis and characterization of mesoporous zirconia with high thermal stability, Journal of Instrumental Analysis. 12 (2011) 1440-1443.

Google Scholar

[20] A.P. Mirgorodsky, M.B. Smirnov, P.E. Quintard, Phonon spectra evolution and soft-mode instabilities of zirconia during the c–t–m transformation, Journal of Physics and Chemistry of Solids. 60 (1999) 985-992.

DOI: 10.1016/s0022-3697(99)00005-0

Google Scholar

[21] Z.H. Lin, G. Lin, L. Wu, et al, Phase structure and transformation of zirconia, Chinese Journal of Rare Metals. 27 (2003) 49-52.

Google Scholar