Saturation Concentration of Gas Pollutants in Photocatalysis

Article Preview

Abstract:

Saturation behavior in photocatalysis is investigated for volatile organic carbons (VOCs) and ammonia by using a tubular photoreactor and TiO2 nanoparticles, synthesized by a flame chemical vapor deposition (CVD) process. Degradation degree versus initial concentration shows that saturation behavior occurs at different initial concentrations for different gas pollutants. The saturation concentration is obtained by taking as the intersection of the level off part and the tangential line to the rapid change part from the curve of degradation degree versus initial concentration. The saturation concentration for benzene is as low as 0.063 mg/m3, and is up to 720mg/m3 for formaldehyde for TiO2 nanoparticles synthesized by a flame CVD process.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

306-311

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Pichat, Photocatalytic degradation of pollutants in water and air: basic concepts and applications, in M.A. Tarr (ed. ), Chemical Degradation Methods for Wastes and Pollutants: Environmental and Industrial Applications, Basel: Marcel Dekker, Inc., New York, 2003, pp.77-119.

DOI: 10.1201/9780203912553.ch2

Google Scholar

[2] O. Carp, C. L. Huisman, A. Reller, Photoinduced reactivity of titanium dioxide. Prog. in Solid State Chem. 32(2004)33-177.

Google Scholar

[3] S.M. Gupta, M. Tripathi, A review of TiO2 nanoparticles. Chinese Science Bulletin. 56(2011)1639-1657.

Google Scholar

[4] R. Miller, R. Fox, Treatment of organic contaminates in air by photocatalytic oxidation: a commercialization perspective. in D. F. Ollis and H. Al-Ekabi, (Eds. ), Photocatalytic Purification and Treatment of Water and Air, Elsevier, Amsterdam, 1993, pp.573-578.

Google Scholar

[5] Y. Ku, C.M. Ma, Y.S. Shen, Decomposition of gaseous trichloroethylene in a photoreactor with TiO2-coated nonwoven fiber textile. Appl. Catal. B: Environ. 34 (2001)181-190.

DOI: 10.1016/s0926-3373(01)00216-8

Google Scholar

[6] H.Y. Xie, Y.N. Zhang, Q.L. Xu, Photodegradation of VOCs by C_TiO2 nanoparticles produced by flame CVD process. J Nanosci. Nanotechnol. 10 (2010)5445-5450.

DOI: 10.1166/jnn.2010.1935

Google Scholar

[7] Q. Geng, N. Chen, Photocatalytic degradation of a gaseous benzene-toluene mixture in a circulated photocatalytic reactor. Chem. Eng. Technol. 34(2011)400-408.

DOI: 10.1002/ceat.201000195

Google Scholar

[8] H.Y. Xie, L.P. Zhu, L.L. Wang et al., Photodegradation of benzene by TiO2 nanoparticles prepared by flame CVD process. Particuology 9 (2011)75-79.

DOI: 10.1016/j.partic.2010.05.010

Google Scholar

[9] H.Y. Xie, L.L. Wang, L.P. Zhu et al., Photodegradation of ammonia by TiO2 nanoparticles produced by flame CVD process. Advanced Materials Research 152-153 (2011)391-394.

DOI: 10.4028/www.scientific.net/amr.152-153.391

Google Scholar

[10] H.Y. Xie, S.W. Chen, C.W. Ma et al., Photodegradation of toluene by TiO2 nanoparticles by Flame CVD Process. Advanced Materials Research 233-235(2011)1474-1478.

Google Scholar

[11] S. Sitkiewicz, A. Heller, Photocatalytic oxidation of benzene and stearic acid on sol-gel derived TiO2 thin films attached to glass. New J. Chem. 20 (1996)233-242.

Google Scholar

[12] M.M. Ameen, G.B. Raupp, Reversible catalyst deactivation in the photocatalytic oxidation of diluteo-xylene in Air. J. Catal. 184(1999)112-122.

DOI: 10.1006/jcat.1999.2442

Google Scholar

[13] A.J. Maira, K.L. Yeung, J. Soria et al., Gas-phase photo-oxidation of toluene using nanometer-size TiO2 catalysts. Appl. Catal. B: Environ. 29(2001)327-336.

DOI: 10.1016/s0926-3373(00)00211-3

Google Scholar

[14] J. Peral, D.F. Ollis, Heterogeneous photocatalytic oxidation of gas-phase organics for air purification: Acetone, 1-butanol, butyraldehyde, formaldehyde, and m-xylene oxidation. J. Catal. 136(1992)554-565.

DOI: 10.1016/0021-9517(92)90085-v

Google Scholar

[15] R.M. Alberci, M.C. Canela, M.N. Eberlin, W.F. Jardim, Catalyst deactivation in the gas phase destruction of nitrogen-containing organic compounds using TiO2/UV–VIS. Appl. Catal. B: Environ. 30(2001)389-397.

DOI: 10.1016/s0926-3373(00)00256-3

Google Scholar

[16] D.V. Kozlov, A.V. Vorontsov, P.G. Smirniotis, E.B. Savinos, Gas-phase photocatalytic oxidation of diethyl sulfide over TiO2: kinetic investigations and catalyst deactivation. Appl. Catal. B: Environ. 42(2003)77-87.

DOI: 10.1016/s0926-3373(02)00217-5

Google Scholar

[17] A.V. Vorontsov, C. Lion, E.N. Savinov, P.G. Smirniotis, Pathways of photocatalytic gas phase destruction of HD simulant 2-chloroethyl ethyl sulfide. J. Catal. 220(2003)414-423.

DOI: 10.1016/s0021-9517(03)00293-8

Google Scholar

[18] M. Sauer, D.F. Ollis, Acetone oxidation in a photocatalytic monolith reactor. J. Catal. 149 (1994)81-91.

DOI: 10.1006/jcat.1994.1274

Google Scholar

[19] H. Einaga, S. Futamura, T. Ibusuki, Photocatalytic decomposition of benzene over TiO2 in a humidified air stream. Phys. Chem. Chem. Phys. 1(1999)4903-4908.

DOI: 10.1039/a906214i

Google Scholar

[20] H. Einaga, S. Futamura, T. Ibusuki, Heterogeneous photocatalytic oxidation of benzene, toluene, cyclohexene and cyclohexane in humidified air: comparison of decomposition behavior on photoirradiated TiO2 catalyst. Appl. Catal. B: Environ. 38(2002).

DOI: 10.1016/s0926-3373(02)00056-5

Google Scholar

[21] H.Y. Xie, G.L. Gao, Z. Tian et al., Synthesis of TiO2 nanoparticles by propane/air turbulent flame CVD process. Particuology 7 (2009)204-210.

DOI: 10.1016/j.partic.2009.03.003

Google Scholar

[22] K.V. Baiju, A. Zachariah, S. Shukla, Correlating photoluminescene and photocatalytic activity of mixed-phase nanocrystalline titania. Catal. Lett., 130 (2009)130-136.

DOI: 10.1007/s10562-008-9798-5

Google Scholar

[23] V. Etacheri, M.K. Seery, S.J. Hinder, S.C. Pillai, Highly visible light active TiO2−xNx heterojunction photocatalysts, Chem. Mater. 22 (2010)3843-3853.

DOI: 10.1021/cm903260f

Google Scholar