[1]
P. Pichat, Photocatalytic degradation of pollutants in water and air: basic concepts and applications, in M.A. Tarr (ed. ), Chemical Degradation Methods for Wastes and Pollutants: Environmental and Industrial Applications, Basel: Marcel Dekker, Inc., New York, 2003, pp.77-119.
DOI: 10.1201/9780203912553.ch2
Google Scholar
[2]
O. Carp, C. L. Huisman, A. Reller, Photoinduced reactivity of titanium dioxide. Prog. in Solid State Chem. 32(2004)33-177.
Google Scholar
[3]
S.M. Gupta, M. Tripathi, A review of TiO2 nanoparticles. Chinese Science Bulletin. 56(2011)1639-1657.
Google Scholar
[4]
R. Miller, R. Fox, Treatment of organic contaminates in air by photocatalytic oxidation: a commercialization perspective. in D. F. Ollis and H. Al-Ekabi, (Eds. ), Photocatalytic Purification and Treatment of Water and Air, Elsevier, Amsterdam, 1993, pp.573-578.
Google Scholar
[5]
Y. Ku, C.M. Ma, Y.S. Shen, Decomposition of gaseous trichloroethylene in a photoreactor with TiO2-coated nonwoven fiber textile. Appl. Catal. B: Environ. 34 (2001)181-190.
DOI: 10.1016/s0926-3373(01)00216-8
Google Scholar
[6]
H.Y. Xie, Y.N. Zhang, Q.L. Xu, Photodegradation of VOCs by C_TiO2 nanoparticles produced by flame CVD process. J Nanosci. Nanotechnol. 10 (2010)5445-5450.
DOI: 10.1166/jnn.2010.1935
Google Scholar
[7]
Q. Geng, N. Chen, Photocatalytic degradation of a gaseous benzene-toluene mixture in a circulated photocatalytic reactor. Chem. Eng. Technol. 34(2011)400-408.
DOI: 10.1002/ceat.201000195
Google Scholar
[8]
H.Y. Xie, L.P. Zhu, L.L. Wang et al., Photodegradation of benzene by TiO2 nanoparticles prepared by flame CVD process. Particuology 9 (2011)75-79.
DOI: 10.1016/j.partic.2010.05.010
Google Scholar
[9]
H.Y. Xie, L.L. Wang, L.P. Zhu et al., Photodegradation of ammonia by TiO2 nanoparticles produced by flame CVD process. Advanced Materials Research 152-153 (2011)391-394.
DOI: 10.4028/www.scientific.net/amr.152-153.391
Google Scholar
[10]
H.Y. Xie, S.W. Chen, C.W. Ma et al., Photodegradation of toluene by TiO2 nanoparticles by Flame CVD Process. Advanced Materials Research 233-235(2011)1474-1478.
Google Scholar
[11]
S. Sitkiewicz, A. Heller, Photocatalytic oxidation of benzene and stearic acid on sol-gel derived TiO2 thin films attached to glass. New J. Chem. 20 (1996)233-242.
Google Scholar
[12]
M.M. Ameen, G.B. Raupp, Reversible catalyst deactivation in the photocatalytic oxidation of diluteo-xylene in Air. J. Catal. 184(1999)112-122.
DOI: 10.1006/jcat.1999.2442
Google Scholar
[13]
A.J. Maira, K.L. Yeung, J. Soria et al., Gas-phase photo-oxidation of toluene using nanometer-size TiO2 catalysts. Appl. Catal. B: Environ. 29(2001)327-336.
DOI: 10.1016/s0926-3373(00)00211-3
Google Scholar
[14]
J. Peral, D.F. Ollis, Heterogeneous photocatalytic oxidation of gas-phase organics for air purification: Acetone, 1-butanol, butyraldehyde, formaldehyde, and m-xylene oxidation. J. Catal. 136(1992)554-565.
DOI: 10.1016/0021-9517(92)90085-v
Google Scholar
[15]
R.M. Alberci, M.C. Canela, M.N. Eberlin, W.F. Jardim, Catalyst deactivation in the gas phase destruction of nitrogen-containing organic compounds using TiO2/UV–VIS. Appl. Catal. B: Environ. 30(2001)389-397.
DOI: 10.1016/s0926-3373(00)00256-3
Google Scholar
[16]
D.V. Kozlov, A.V. Vorontsov, P.G. Smirniotis, E.B. Savinos, Gas-phase photocatalytic oxidation of diethyl sulfide over TiO2: kinetic investigations and catalyst deactivation. Appl. Catal. B: Environ. 42(2003)77-87.
DOI: 10.1016/s0926-3373(02)00217-5
Google Scholar
[17]
A.V. Vorontsov, C. Lion, E.N. Savinov, P.G. Smirniotis, Pathways of photocatalytic gas phase destruction of HD simulant 2-chloroethyl ethyl sulfide. J. Catal. 220(2003)414-423.
DOI: 10.1016/s0021-9517(03)00293-8
Google Scholar
[18]
M. Sauer, D.F. Ollis, Acetone oxidation in a photocatalytic monolith reactor. J. Catal. 149 (1994)81-91.
DOI: 10.1006/jcat.1994.1274
Google Scholar
[19]
H. Einaga, S. Futamura, T. Ibusuki, Photocatalytic decomposition of benzene over TiO2 in a humidified air stream. Phys. Chem. Chem. Phys. 1(1999)4903-4908.
DOI: 10.1039/a906214i
Google Scholar
[20]
H. Einaga, S. Futamura, T. Ibusuki, Heterogeneous photocatalytic oxidation of benzene, toluene, cyclohexene and cyclohexane in humidified air: comparison of decomposition behavior on photoirradiated TiO2 catalyst. Appl. Catal. B: Environ. 38(2002).
DOI: 10.1016/s0926-3373(02)00056-5
Google Scholar
[21]
H.Y. Xie, G.L. Gao, Z. Tian et al., Synthesis of TiO2 nanoparticles by propane/air turbulent flame CVD process. Particuology 7 (2009)204-210.
DOI: 10.1016/j.partic.2009.03.003
Google Scholar
[22]
K.V. Baiju, A. Zachariah, S. Shukla, Correlating photoluminescene and photocatalytic activity of mixed-phase nanocrystalline titania. Catal. Lett., 130 (2009)130-136.
DOI: 10.1007/s10562-008-9798-5
Google Scholar
[23]
V. Etacheri, M.K. Seery, S.J. Hinder, S.C. Pillai, Highly visible light active TiO2−xNx heterojunction photocatalysts, Chem. Mater. 22 (2010)3843-3853.
DOI: 10.1021/cm903260f
Google Scholar