Adsorption Behavior of Methylene Blue with Quaternary Ammonium Modified Chitosan Microspheres Resin

Article Preview

Abstract:

Chitosan (CTS) is the partly deacetylated product of Chitin. It contains hydrogen bond and ionic bond, which can form a cage-like molecular network structure and thus it has a strong adsorption. According to the presence of hydroxyl and amino groups of the chitosan, through chemical modification, introduces different groups in repeating units become possible. In this article, different component of the rectorite (REC) were used to intercalate the chitosan in order to have the quaternary ammonium modification. Through this process we could obtain three kinds of chitosan/rectorite modified products. Besides, their structures were observed by using the X-ray diffraction (XRD) and Fourier transform infrared (FT-IR). This paper also explained the examination of the adsorption effect of three kinds of chitosan/ rectorite modified products to the methylene blue under different conditions. Whats more, it also discussed the main factors of this effect. The results showed that the three adsorption behavior of adsorbents can be described by using the Freundlich isotherm model. In three kinds of chitosan/ rectorite modified products, 4:1 CTS/REC-ETA demonstrated the best adsorption. Followed was the 2:1 CTS/REC-ETA. And the 8:1 CTS/REC-ETA was the weakest.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

281-301

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. Malarvizhi, Y. Venkateswarlu, V.R. babu, et al., Studies on removal of chromium (VI) from water using chitosan coated Cyperus pangorei. Water sci. technol. 62(2010) 2425-2441.

DOI: 10.2166/wst.2010.494

Google Scholar

[2] H.C. Ge and S.Y. Huan. Microwave Preparation and Adsorption Properties of EDTA-Modified Cross-Linked Chitosan. J. Appl. Polym. Sci. 115(2010) 514-519.

DOI: 10.1002/app.30843

Google Scholar

[3] P. -J. Lu, W. -W. Hu, T. -S. Chen, et al., Adsorption of copper-citrate complexes on chitosan: Equilibrium modeling. Bioresource Technol. 101(2010)1127-1134.

DOI: 10.1016/j.biortech.2009.09.055

Google Scholar

[4] C.Q. Qin, Y.M. Du, and L. Xiao. Effect of hydrogen peroxide treatment on the molecular weight and structure of chitosan. Polym. degrad. stabil. 76(2002)211-218.

DOI: 10.1016/s0141-3910(02)00016-2

Google Scholar

[5] X.Y. Wang and Y.M. Du. Preparation, characterization and antimicrobial activity of chitosan/layered silicate nanocomposites. Polym. 47(2006) 6738-6744.

DOI: 10.1016/j.polymer.2006.07.026

Google Scholar

[6] X.Y. Wang, X.F. Pei, Y.M. Du, et al., Quaternized chitosan/rectorite intercalative materials for a gene delivery system. Nanotechnology. 19(2008)375102.

DOI: 10.1088/0957-4484/19/37/375102

Google Scholar

[7] S.S. Gupta and K.G. Bhattacharyya. Interaction of metal ions with clays: I. A case study with Pb(II). Appl. Clay. Sci. 30(2005) 199-208.

DOI: 10.1016/j.clay.2005.03.008

Google Scholar

[8] M. Ilic, E. Koglin, A. Pohlmeier, et al., Schwuger. 2000. Adsorption and polymerization of aniline on Cu(II)-montmorillonite: Vibrational spectroscopy and ab initio calculation. Langmuir. 16(2000) 8946-8951.

DOI: 10.1021/la000534d

Google Scholar

[9] X.Y. Wang and L. Bo. Preparation and characterization of new quaternized carboxymethyl chitosan/rectorite nanocomposite Composites. Sci. Technol. 70(2000)1161-1167.

DOI: 10.1016/j.compscitech.2010.03.002

Google Scholar

[10] M. Akcay and G. Akcay. The removal of phenolic compounds from aqueous solutions by organophilic bentonite. J. Hazard. Mater. B. 113(2004) 189-193.

DOI: 10.1016/j.jhazmat.2004.06.026

Google Scholar

[11] L.Z. Zhu, Y.M. Li, and J.Y. Zhang. Sorption of Organobentonites to Some Organic Pollutants in Water. Environ. Sci. Technol. 31(1997)1407-1410.

DOI: 10.1021/es960641n

Google Scholar

[12] K. Song and G. Sandi. Characterization of montmorillonite surfaces after modification by organosilane. Clays Clay Miner. 49(2001) 119-125.

DOI: 10.1346/ccmn.2001.0490202

Google Scholar

[13] X.Y. Wangand Y.M. Du. Biopolymer/montmorillonite nanocomposite: Preparation and controlled-release property. Nanotechnology. 19(2008)065707.

DOI: 10.1088/0957-4484/19/6/065707

Google Scholar

[14] M. Darder, M. Colilla, and E. Ruiz-Hitzky. Biopolymer−Clay Nanocomposites Based on Chitosan Intercalated in Montmorillonite. Chem. Mater. 15(2003) 3774-3780.

DOI: 10.1021/cm0343047

Google Scholar

[15] M. Darder, M. Colilla, and E. Ruiz-Hitzky. Chitosan–clay nanocomposites: application as electrochemical sensors. Appl. Clay. Sci. 28(2005)199-208.

DOI: 10.1016/j.clay.2004.02.009

Google Scholar

[16] M. Darder, M. Lopez-Blanco, and P. Aranda. Microfibrous Chitosan−Sepiolite Nanocomposites. Chem. Mater. 18(2006) 1602-1610.

DOI: 10.1021/cm0523642

Google Scholar

[17] L. Wang and A.Q. Wang, Removal of Congo red from aqueous solution using a chitosan/organo- montmorillonite nanocomposite. J. Chem. Technol. Biotechnol. 82(2007) 711-720.

DOI: 10.1002/jctb.1713

Google Scholar

[18] L. Wang and A.Q. Wang. Adsorption characteristics of Congo Red onto the chitosan/montmorillonite nanocomposite. J. Hazard. Mater. 147 (2007) 979-985.

DOI: 10.1016/j.jhazmat.2007.01.145

Google Scholar

[19] L. Wang, J.P. Zhang, and A.Q. Wang. Removal of methylene blue from aqueous solution using chitosan-g-poly(acrylic acid)/montmorillonite superadsorbent nanocomposite. Colloid Surface A. 322(2008)37-53.

DOI: 10.1016/j.colsurfa.2008.02.019

Google Scholar

[20] E. Assaad, A. Azzouz, and D. Nistor. Metal removal through synergic coagulation–flocculation using an optimized chitosan–montmorillonite system. Appl Clay Sci. 37(2007)258-274.

DOI: 10.1016/j.clay.2007.02.007

Google Scholar