Mechanical Analysis and Identification Markings of Nanoparticle Distribution in Narrow Friction Zones

Article Preview

Abstract:

Through scanning electron microscope (SEM) observation on kinetic friction and static friction deformation, our data show that granular nanoparticles (commonly 60-80nm with diameter, d) are widespreadly distributions in narrow friction zones. Furthermore, the identification markings, such as nature, experiment and fabric orientation etc., usefully deal with the mechanical analysis,and the granular nanoparticle distributions in narrow friction zones could be subdivided into three kinds, i.e. simple shear, pure shear and rotational shear pattern. Additionally, note that under stress action physico-chemical phase changes might be respectively caused by internal cohesion and dynamic differentiation in the narrow friction zones. These analyses deduce that some few complex idea fields, including structural stress, physics and chemistry field, with spatial and temporal evolution exist in the narrow friction zones, moreover, they viably regulate the nanoparticle distribution.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

312-318

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B. Bhushan, Nano-tribology and nano-mechanics, Wear. 159 (2005) 1507-1531.

Google Scholar

[2] C. Viti, T. Hirose, Thermal deformation of serpentine during coseismic faulting: Nanostructures and mineral reactions, J. Struct Geol. 32 (2010) 1476-1484.

DOI: 10.1016/j.jsg.2010.09.009

Google Scholar

[3] S. Y. Tarassov, A. V. Kolubaev, Effect of friction on subsurface layer microstructure in austenitic and martensitic steels, Wear. 231 (1999) 228-234.

DOI: 10.1016/s0043-1648(99)00107-6

Google Scholar

[4] Y. Sun, L.S. Shu, X. C. Lu, H. Liu, X. H. Zhang, A. M. Lin, K. Kasaka, Recent progress in studies on the nano-sized particle layer in shear planes, Progress in Natural Science. 18 (2008) 367-373.

DOI: 10.1016/j.pnsc.2007.12.001

Google Scholar

[5] N. Keulen, R. Heilbronner, H. Stunitz, A-M. Boullier, Grain size distributions of fault rocks: Acomparison between experimentally and naturally deformed granitoids, Jour Stuct Geol. 29 (2007) 1287-1300.

DOI: 10.1016/j.jsg.2007.04.003

Google Scholar

[6] H. Arora, P. Du, K.W. Tan, Block Copolymer Self Assembly-Directed Single-Crystal Homo-and –Heteroepitaxial Nanostructure, Science. 330 (2010) 214-217.

DOI: 10.1126/science.1193369

Google Scholar

[7] A.M. Schleicher, V. Pluijm, L.N. Warr, Nano-coating of clay and creep of the San Andress fault at Parkfield California, Geology. 38 (2010) 667-670.

DOI: 10.1130/g31091.1

Google Scholar

[8] R. Han, T. Hirose, T. Shimamoto, Y. Lee, J-i. Ando, Granular nano-particles lubricate faults during seismic slip, Geology. 39 (2011) 599-602.

DOI: 10.1130/g31842.1

Google Scholar

[9] M.F. Jr., Hochella, S.K. Lower, P.A. Maurice, Nano-minerals, Mineral Nano-particles and Earth Systems, Science. 319 (2008) 1631-1635.

Google Scholar

[10] C. Fradin, A. Brasian, Reduction in the surface energy of liquid interface at short length scale, Nature. 403 (2000) 871-874.

Google Scholar

[11] O.M. Braun, A.G. Naumovets, Nano-tribology: Microscopic mechanism of friction, Surf Sci. Rep. 60 (2006) 79-158.

Google Scholar

[12] K. Mair, M. Fiye, C. Marone, Influence of grain characteristics on the friction of granular shear zones, Jour Geophy Res. 107 (B10) (2002) 1-9.

DOI: 10.1029/2001jb000516

Google Scholar

[13] F. Fussis, M.R. Handy, Micro-mechanisms of shear zone propagation at the brittle-viscous transition. Jour Struct Geol. 30 (2008) 1242-1253.

DOI: 10.1016/j.jsg.2008.06.005

Google Scholar

[14] Y. Mo, K.T. Turner, I. Szlufarska, Friction lows at the nano-scale, Nature (Letter). 457 (2009) 1116-1119.

Google Scholar

[15] M. Pier, L. Burlini, L. Kunze, Rheological and micro-structural evolution of Carara marble with high shear strain: Result from high temperature torsion experiments. Jour Struct Geol. 23 (2001) 1392-1413.

DOI: 10.1016/s0191-8141(01)00006-2

Google Scholar

[16] J. Tullis, Deformation of granitic rocks: Experimental studies and natural example, Reviews in Mineralogy and Geochemistry. 51 (2002) 51-96.

DOI: 10.2138/gsrmg.51.1.51

Google Scholar

[17] R. Han, T. Shimamoto, T. Hirose, J-H. Ree, J-I. Ando, Ultra low friction of carbonate fault caused by thermal decomposition, Science. 36 (2007) 878-881.

DOI: 10.1126/science.1139763

Google Scholar

[18] Y. Sun, S.Y. Jiang, W. Zhou, X. C. Lu, Nano-coating texture on the shear slip surface in rocky materials, Advanced Materials Research. 669 (2013) 108-114.

DOI: 10.4028/www.scientific.net/amr.669.108

Google Scholar

[19] C. Collettini, R-H. Sibson, Normal fault, normal friction, Geology. 29 (2001) 927-930.

DOI: 10.1130/0091-7613(2001)029<0927:nfnf>2.0.co;2

Google Scholar

[20] O. Ben-David, G. Cohen, J. Finebery, The Dynamics of the Onset of Frictional Slip, Science. 330 (2010) 211-214.

DOI: 10.1126/science.1194777

Google Scholar

[21] P. Xypolias, Some new aspect of kinematics vorticity analysis in naturally deformed quartzites, Jour Struct Geol. 31 (2009) 3-10.

DOI: 10.1016/j.jsg.2008.09.009

Google Scholar

[22] L. Ru, B L. Hao, X. S. Cheng, Phase transitions and phase phenomena (in Chinese), Beijing: Science Press. (2006) 1-236.

Google Scholar

[23] J. Escartin, M. Andreari, G. Hirth, B. Evans, Relationship between the micro-structural evolution and the rheology of talc at elevated pressure and temperatures, Earth and Planetary Science (Letters). 268 (2008) 463-475.

DOI: 10.1016/j.epsl.2008.02.004

Google Scholar

[24] C. Viti, T. Hirose, Dehydration reaction and micro/nano-structures in experimentally deformation serpentinites, Contrib. Mineral Petrol. 157 (2009) 327-338.

DOI: 10.1007/s00410-008-0337-6

Google Scholar

[25] W. L. Guo, H. Dong, M. Lu, The coupled effects of thickness and delamination on cracking resistance of X70 pipeline steel, Inter Jour of Pressure Vessels and Piping. 79 (2002) 403-412.

DOI: 10.1016/s0308-0161(02)00039-x

Google Scholar