First-Principles Study on Electronic and Optical Properties in Pr-Doped Anatase TiO2

Article Preview

Abstract:

The crystal structures, band structures, density of states, charge density, overlap population and optical properties of pure anatase TiO2 and Pr-doped anatase TiO2 were studied by using the plane-wave pseudopotential method based on the first-principles. After Pr doping, the valence band and the conduction band moved down and became dense, energy gap became narrow and a impurity band which consists of Pr 4f states appeared. And the dipole moment got improved, which is good for the separate of the electron-hole pairs. These effectively overcome two huge shortcomings of TiO2. Besides, Pr-doped anatase TiO2 produced more carriers which have good transport properties and the absorption spectra of Pr-O bond appear in the region that the wavelength is longer. The calculation results of optical properties show that the absorption edge occured red shift, which means the photocatalytic activity of anatase TiO2 got remarkable improved during visible-light region. This conforms to the previous analysis. So the photocatalytic activity of anatase TiO2 got remarkable improved after Pr doping.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

260-268

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode , Nature 238 (1972) 37-38.

DOI: 10.1038/238037a0

Google Scholar

[2] H. Zhang, X.J. Zhang, Application of nanometer TiO2 photocatalytic technology in the treatment of industrial wastewater, Journal of Environment and Health 27 (2010) 1027-1029.

Google Scholar

[3] A. Fan, Y. Zu, X.J. Li, Research progress of nanometer TiO2 purifying atmosphere in Japan, Titanium Industry Progress 3 (2000) 40-41.

Google Scholar

[4] T. Hitosugi, N. Yamada, S. Nakao, Y. Hirose, T. Hasegawa, Properties of TiO2-based transparent conducting oxides, Phys. Status Solidi A 207 (2010) 1529–1537.

DOI: 10.1002/pssa.200983774

Google Scholar

[5] Y.J. Li, J. Li, M.Y. Ma, Y. OU, Z. Yu, W.B. Yan, Preparation of TiO2/activated carbon with Fe ions doping photocatalyst and its application to photocatalytic degradation of reactive brilliant red K2G, Science in China Series B: Chemistry 52 (2009).

DOI: 10.1007/s11426-009-0169-x

Google Scholar

[6] B. O'regan, M. Gr tzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature 353 (1991) 737-740.

DOI: 10.1038/353737a0

Google Scholar

[7] S. Sakthivel, M. Janczarek, H. Kisch, Visible light activity and photoelectrochemical properties of nitrogen-doped TiO2, J. Phys. Chem. B 108 (2004) 19384-19387.

DOI: 10.1021/jp046857q

Google Scholar

[8] J.L. Gole, J.D. Stout, C. Burda, et al., Highly efficient formation of visible light tunable TiO2-xNx photocatalysts and their transformation at the nanoscale, J. Phys. Chem. B 108 (2004) 1230-1240.

DOI: 10.1002/chin.200417021

Google Scholar

[9] M. Mrowetz, W. Balcerski, A. J. Colussi, M. R. Hoffmann, Oxidative power of nitrogen-doped TiO2 photocatalysts under visible illumination, J. Phys. Chem. B 108 (2004) 17269-17273.

DOI: 10.1021/jp0467090

Google Scholar

[10] Y. Izumi, T. Itoi, S. Peng, Site Structure and Photocatalytic Role of Surfur or Nitrogen-Doped Titanium Oxide with Uniform Mesopores under Visible Light, J. Phys. Chem. C 113 (2009) 6706–6718.

DOI: 10.1021/jp810817y

Google Scholar

[11] R.H. Zhang, Q. Wang, Q. Li, J.F. Dai, D.H. Huang, First-principle calculations on optical properties of C–N-doped and C–N-codoped anatase TiO2, Physica B 406 (2011) 3417-3422.

DOI: 10.1016/j.physb.2011.06.011

Google Scholar

[12] H.W. Peng, J.B. Li, S.S. Li, B.X. Jian, First-principles study of the electronic structures and magnetic properties of 3d transition metal-dopedanatase TiO2, Journal of Physics: Condensed Matter 20 (2008) 125207-125212.

DOI: 10.1088/0953-8984/20/12/125207

Google Scholar

[13] J.F. Zhu, Z.G. Deng, F. Chen, J.L. Zhang, H.J. Chen, J. Huang, L. Zhang, Hydrothermal doping method for preparation of Cr3+-TiO2 photocatalysts with concentration gradient distribution of Cr3+, Appl. Catal. B: Environ 62 (2006) 329–335.

DOI: 10.1016/j.apcatb.2005.08.013

Google Scholar

[14] X.H. Wang, J.G. Li, H. Kamiyama, Y. Moriyoshi, T. Ishigaki, Wavelength-sensitive photocatalytic degradation of methyl orange in aqueous suspension over iron(III)-doped TiO2 nanopowders under UV and visible light irradiation, J. Phys. Chem. B 110 (2006).

DOI: 10.1021/jp060082z

Google Scholar

[15] L.S. Yin et al, Photocatalytic degradation of chloramine phosphorus with RE doped TiO2, Journal of Central South University 40 (2009) 139-144.

Google Scholar

[16] G.X. Li, J.Q. Zhang, D.R. Feng, J.P. Guo, Study on the Photocatalysis Degradation of 2, 4-DNP by a Praseodymium-Doped Nanometer TiO2, Chinese Rare Earth 28(2007) 37-39.

Google Scholar

[17] M.D. Segall, P.J.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark, M.C. Payne, First-principles simulation: ideas, illustrations and the CASTEP code, J. Phys.: Condens. Matter 14 (2002) 2717–2744.

DOI: 10.1088/0953-8984/14/11/301

Google Scholar

[18] M.C. Payne, M.P. Teter, D.C. Allan, T.A. Arias, J.D. Joannopoulos, Iterative minimisation techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients, Rev. Mod. Phys 64 (1992) 1045-1097.

DOI: 10.1103/revmodphys.64.1045

Google Scholar

[19] J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett 77 (1996) 3865–3868.

DOI: 10.1103/physrevlett.77.3865

Google Scholar

[20] J.K. Burdett, T. Hughbanks, G.J. Miller, J.W. Richardson, Jr., J.V. Smith, Structural-Electronic Relationships in Inorganic Solids: Powder Neutron Diffraction Studies of the Rutile and Anatase Polymorphs of Titanium Dioxide at 15 and 295 K, J. Am. Chem. Soc. 109 (1987).

DOI: 10.1021/ja00246a021

Google Scholar

[21] R.S. Mulliken, Electronic Population Analysis on LCAO–MO Molecular Wave Functions, I, J. Chem. Phys. 23 (1955) 1833–1840.

DOI: 10.1063/1.1740588

Google Scholar

[22] J. Sato, H. Kobayashi, Y. Inoue, Photocatalytic Activity for Water Decomposition of Indates with Octahedrally Coordinated d10 Configuration. II. Roles of Geometric and Electronic Structure, J. Phys. Chem. B 107 (2003) 7970-7975.

DOI: 10.1021/jp030021q

Google Scholar

[23] M.C. Long, X.Y. Chai, B.X. Zhou, W.M. Cai, G.Z. Liu, Correlation of electronic structures and crystal structures with photocatalytic properties of undoped, N-doped and I-doped TiO2, Chem. Phys. Lett. 420 (2006) 71-76.

DOI: 10.1016/j.cplett.2005.12.036

Google Scholar

[24] H. Tang, H. Berger, P.E. Schmid, F. Levy, Optical properties of anatase (TiO2), Solid State Commun. 92 (1994) 267–271.

DOI: 10.1016/0038-1098(94)90889-3

Google Scholar

[25] X.D. Liu, E.Y. Jiang, Z.Q. Li, Q.G. Song, Electronic structure and optical properties of Nb-doped anatase TiO2, Appl. Phys. Lett. 92 (2008) 252104.

DOI: 10.1063/1.2949070

Google Scholar

[26] K. Osuch, E.B. Lombardi, W. Gebicki, A first principles study of ferromagnetism in ZnO: Ti, Phys. Rev. B 73 (2006) 075202.

Google Scholar

[27] J.P. Perdew, M. Levy, Physical content of the exact Kohn-Sham orbital energies: band gaps and derivative discontinuities, Phys. Rev. Lett. 51 (1983) 1884–1887.

DOI: 10.1103/physrevlett.51.1884

Google Scholar

[28] R. Asahi, T. Morikawa, T. Ohwaki, et al., Visible-light photocatalysis in nitrogen-doped titanium oxides, Science 293 (2001) 269-271.

DOI: 10.1126/science.1061051

Google Scholar