Characterizations of Novel Binuclear Transition Metal Polynitrogen Compounds: M2(N5)4 (M=Co, Rh and Ir)

Article Preview

Abstract:

Theoretical studies on a series of binuclear transition metal pentazolides M2(N5)4 (M=Co, Rh and Ir) predict Paddlewheel-type structures with very short metal-metal distances suggesting high-order metal-metal multiple bonds. Natural Bonding Orbital (NBO) analysis have indicated that the bonding between the metal atom and the five-membered ring is predominantly ionic for each M2(N5)4 species, and a high-order metal-metal multiple bonding exists between the two metal atoms, in addition, the presence of the delocalized π orbital plays an important role in the stabilization of this metal-polynitrogen species. Nucleus independent chemical shift (NICS) values confirm that the planar N5 exhibits aromaticity in these M2(N5)4 species. The values of NICS(0.0), NICS(0.5) and NICS(1.0) for Co2(N5)4 are larger than those of the other two M2(N5)4 species (M=Rh and Ir), with the order of Co2(N5)4>Rh2(N5)4>Ir2(N5)4. The dissociation energies into Mononuclear Fragments for M2(N5)4 (M=Co, Rh and Ir) are predicted to be 82.9 (85.7), 139.9 (113.2), and 155.1 (149.7) kcal/mol, respectively. However, the dissociation energies for the loss of one pentazolato group from the M2(N5)4 analysis have indicated that the Co2(N5)4 is relatively higher at ~40 kcal/mol. Thermochemistry suggests Co2(N5)4 to be a viable species.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

233-252

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] DiSalvo, F. J. Science 1990, 247, 649.

Google Scholar

[2] H. O. Pierson, Handbook of Refractory Carbides and Nitrides, Noyes Publ., New Jersey (1996).

Google Scholar

[3] E. Gregoryanz, C. Sanloup, M. Somayazulu, J. Badro, G. Fiquet, H-.K. Mao, R. Hemeley, Nature Mater. 3 (2004) 294.

DOI: 10.1038/nmat1115

Google Scholar

[4] J.C. Crowhurst, A.F. Goncharov, B. Sadigh, C.L. Evans, P.G. Morrall, J.L. Ferreira, A.J. Nelson, Science 311 (2006) 1275-1278.

DOI: 10.1126/science.1121813

Google Scholar

[5] A.F. Young, C. Sanloup, E. Gregoryanz, S. Scandolo, R.J. Hemley, H.K. Mao, Phys. Rev. Lett. 96 (2006) 155501 (1-4).

Google Scholar

[6] J.C. Crowhurst, A.F. Goncharov, B. Sadigh, J.M. Zaug, D. Aberg, Y. Meng, V.B. Prakapenka, J. Mater. Res. 23 (2008) 1-5.

DOI: 10.1557/jmr.2008.0027

Google Scholar

[7] Noyman, M.; Zilberg, S.; and Haas, Y. J. Phys. Chem. A 2009 , 113, 7376-7382.

Google Scholar

[8] Carlqvist, P.; Ostmark, H.; Brinck, T. J. Org. Chem. 2004, 69, 3222.

Google Scholar

[9] Blanco, F.; Alkorta, I.; and Elguero J. J. Phys. Chem. A 2008, 112, 7682-7688.

Google Scholar

[10] Zhang, X. H.; Li, S.; Li, Q. S. J. Theor. Comput. Chem. 2006, 5, 475-487.

Google Scholar

[11] Frunzke, J.; Lein, M.; and Frenking G. Organometallics. 2002, 21, 3351-3359.

Google Scholar

[12] Athanassios C. Tsipis and Aikaterini Th. Chaviara. Inorg. Chem. 2004, 43, 1273-1286.

Google Scholar

[13] Lein, M.; Frunzke, J.; Timoshkin, A.; Frenking, G. Chem. Eur. J. 2001, 7, 4155.

Google Scholar

[14] Glukhovtsev, M. N.; Schleyer, P. v. R.; Maerker, C. J. Phys. Chem. 1993, 97, 8200.

Google Scholar

[15] Zhao, J. F.; Li, N.; Li, Q. S. Theor. Chem. Acc. 2003, 110, 10.

Google Scholar

[16] Burke, L. A.; Butler, R. N.; Stephens, J. C. J. Chem. Soc., Perkin Trans. 2001, 2, 1679.

Google Scholar

[17] Burke, L. A. and Paul J. Fazen, Chem. Commun., 2004, 1082-1083.

Google Scholar

[18] X. H. Zhang, S. Li and Q. S. Li, Journal of Theoretical and Computational Chemistry, 2006, 475-487.

Google Scholar

[19] J. J. Schneider, Richard Goddard, Stefan Werner, and Carl kruger. Angew. Chem. Int. Ed. Engl. 30 (1991) No. 9, 1124-1125.

Google Scholar

[20] J. L. Kersten, A. L. Rheingold, K. H. Theopold, C. P. Casey, R. A. Widenhoefer, Angew. Chem. Int. Ed. Engl. 31( 1992) NO. 10, 1341-1343.

DOI: 10.1002/anie.199213411

Google Scholar

[21] Resa I, Carmona E, Gutierrez-Puebla E, Monge A, Science 305: 1136, (2004).

Google Scholar

[22] Schnepf A, Himmel HJ, Angew Chem Int Ed 44: 3006, (2005).

Google Scholar

[23] Wang H, Xie Y, King RB, Schaefer HF III, J. Am. Chem. Soc 127: 11646, (2005).

Google Scholar

[24] Xie Y, Schaefer HF III, Jemmis ED, Chem Phys Lett 402: 414, (2005).

Google Scholar

[25] Xie Y, ZZ, Fang WH, Chem Phys Lett 404: 212, (2005).

Google Scholar

[26] Xie Y, Schaefer HF, King RB, J. Am. Chem. Soc 127: 2818, (2005).

Google Scholar

[27] Timoshkin AY, Schaefer HF, Organometallic 3343–3345, (2005).

Google Scholar

[28] Wang Y, Quillian B, Wei P, Wang H, Yang X-J, Xie Y, King RB, Schleyer PvR, Schaefer HF III, Robinson GH, J. Am. Chem. Soc 127: 11944, (2005).

Google Scholar

[29] Yuji Kajita, Takahiko Ogawa, Jun Matsumoto, and Hideki Masuda*. Inorg. Chem. 2009, 48, 9069-9071.

Google Scholar

[30] Cui, J.; Zhang, Y.; Zhao, F.; Yang, J.; Shen, G.; Xu, Y. Progress in Natural Science. 2009, 19, 41-45.

Google Scholar

[31] Becke AD. Density-functional thermochemistry III. The role of exact exchange. J Chem Phys 1993; 98: 5648–52.

Google Scholar

[32] Lee C, Yang W, Parr RG. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 1988; 37: 785–9.

DOI: 10.1103/physrevb.37.785

Google Scholar

[33] Adamo, C.; Barone, V. J. Chem. Phys. 1998, 108, 664.

Google Scholar

[34] Zhao, Y.; Pu, J.; Lynch, B. J.; Truhlar, D. G. Phys. Chem. Chem. Phys. 2004, 6, 673.

Google Scholar

[35] Perdew, J. P., in Electronic Structure of Solids. '91 ed. Ziesche, P.; Esching, H., Akademic Verlag, Berlin, 1991, p.11.

Google Scholar

[36] J. E. Carpenter, F. Weinhold, J. Mol. Struct. (THEOCHEM), 1988, 169, 41.

Google Scholar

[37] J. P. Foster, and F. J. Weinhold, J. Am. Chem. Soc., 1980, 24, 7211.

Google Scholar

[38] A. E. Reed, R. B. Weinstock, F. Weinhold, J. Chem. Phys., 1985, 83, 735.

Google Scholar

[39] A. E. Reed, L. A. Curtiss, and F. Weinhold, Chem. Rev., 1986, 6, 899.

Google Scholar

[40] K. Wolinski, J. F. Hilton, and P. Pulay, J. Am. Chem. Soc., 1990, 23, 8251.

Google Scholar

[41] G. Schreckenbach, and T. Ziegler, J. Phys. Chem., 1995, 2, 606.

Google Scholar

[42] Jorg L. Kersten, Arnold L. Rheingold, Klaus H. Theopold, * Charles P. Casey, Ross A. Widenhoefer and Cornelis E. C. A. Hop. Angew. Chem. Int. Ed. Engl. 1992, 31, 1341.

DOI: 10.1002/anie.199213411

Google Scholar

[43] Linus Pauling. Pro. Natl. Acad. Sci. USA 81(1984), 1918-(1921).

Google Scholar

[44] Tsuyoshi Kurikawa, Masaaki Hirano, Hiroaki Takeda, Keiichi Yagi, Kuniyoshi Hoshino, Atsushi Nakajima, and Koji Kaya. J. Phys. Chem. 1995, 99, 16248-16252.

DOI: 10.1021/j100044a008

Google Scholar

[45] Pipal, J. R. & Grimes, R. N. (1977) Inorg. Chem. 16, 3255-3262.

Google Scholar

[46] Christoph, G. G. & KOH, Y. B. (1979). J. Am. Chem., Soc. 101, 1422-1434.

Google Scholar

[47] Cotto, F. A., DeBoer, B. G., Laprade, M. D., Pipal, J. R. & Ucko, D. A. (1971). Acta Cryst. B27, 1664-1671.

Google Scholar

[48] Andre Cogne, Andre Grand, Paul Rey, and Robert Subra. J. Am. Chem. Soc. 1989, 111, 3230-3238.

Google Scholar

[49] William Clegg. Acta Cryst. (1980). B36, 2437-2439.

Google Scholar

[50] Gabriel Aullon and Santiago Alvarez, Inorg. Chem. 1993, 32, 3712-3719.

Google Scholar

[51] McCarthy, H. J.; Tocher, D. A. Inorg. Chim. Acta 1988, 145, 171.

Google Scholar

[52] Kochetkova, A. P.; Sveshnikova, L. B.; Stepanovich, V. M.; Sokol, V. I. Koord. Khim. 1982, 8, 529.

Google Scholar

[53] Sokol, V. I.; Porai-Koshits, M. A.; Kochetkova, A. P.; Sveshikova, L. B. Koord. Khim. 1984, 10, 844.

Google Scholar

[54] Clark, R. J. H.; Hempleman, A. J.; Dawes, H. M.; Hursthouse, M. B.; Flint, C. D. J. Chem. Soc., Dalton Trans. 1985, 1775.

Google Scholar

[55] Cogne, A.; Grand, A.; Rey, P.; Subra, R. J. Am. Chem. Soc. 1987, 109, 7927.

Google Scholar

[56] Cogne, A.; Grand, A.; Rey, P.; Subra, R. J. Am. Chem. Soc. 1989, 111, 3230.

Google Scholar

[57] Chakravarty, A. R.; Cotton, F. A.; Tocher, D. A. J. Chem. Soc., Chem. Commun. 1984, 501.

Google Scholar

[58] Chakravarty, A. R.; Cotton, F. A.; Tocher, D. A.; Tocher, J. H. Organometallics 1985, 4, 8.

Google Scholar

[59] Lahuerta, P.; Paya, J.; Pellinghelli, M. A.; Tiripicchio, A. Inorg. Chem. 1992, 31, 1224.

Google Scholar

[60] David A. Vicic and William D. Jones, Organometallics 1999, 18, 134-138.

Google Scholar

[61] Stevens, R. C.; Mclean, M. R.; Wen, T.; Carpenter, J. D.; Bau, R.; Koetzle, T. F. Inorg. Chim. Acta 1989, 161, 223.

Google Scholar

[62] (a) Arif, A. A.; Jones, R. A.; Schwab, S. T.; Whittlesey, B. R. J. Am. Chem. Soc. 1986, 108, 1703. (b) Arif, A. A.; Heaton, D. E.; Jones, R. A.; Kidd, K. B.; Wright, T. C.; Whittlesey, B. R.; Atwood, J. L.; Hunter, W. E.; Zahang, H. Inorg. Chem. 1987, 26, 4065. (c) Bleeke, J. R.; Rohde, A. M.; Robinson, K. E. Organometallics 1994, 13, 401. (d) Bleeke, J. R.; Rohde, A. M.; Robinson, K. E. Organometallics 1995, 14, 1674.

DOI: 10.1021/om00014a001

Google Scholar

[63] F. Albert Cotton and Rinaldo P. Organometallics 1987, 6, 1743-1751.

Google Scholar

[64] L. F. Veiros and M. E. Minas da Piedade, J. Organomet. Chem., 2002, 662, 105-111.

Google Scholar

[65] D. Dobbs and R. Bergman, J. Am. Chem. Soc., 1993, 115, 3836; D. Dobbs and R. Bergman. Organometallics, 1994, 13, 4594.

Google Scholar

[66] John R. Bleeke, Alicia M. Rohde, and Kerry D. Robinson. Organometallics 1995, 14, 1674-1680.

Google Scholar

[67] M. K. Cyran. Ski, T. M. Krygowski, A. R. Katritzky, and P. v.R. Schleyer, J. Org. Chem. 67, 1333 (2002).

Google Scholar

[68] D. J. Eluvathingal and K. Boggavarapu, Inorg. Chem. 37, 2110 (1998).

Google Scholar

[69] B. Goldfuss, P. v.R. Schleyer, and F. Hampel, Organometallics 15, 1755 (1996).

Google Scholar

[70] (a) T. M. Krygowski, M. K. Cyran. ski, Z. Czarnocki, G. Hafelinger, and A.R. Katritzky, Tetrahedron 56, 1783 (2000). (b) T. M. Krygowski, J. Chem. Inf. Comput. Sci. 33, 70 (1993).

DOI: 10.1016/s0040-4020(99)00979-5

Google Scholar

[71] M. Glukhovtsev, J. Chem. Educ. 74, 132 (1997).

Google Scholar

[72] (a) M. Hofmann, P. v.R. Schleyer, Inorg. Chem. 37 (1998).

Google Scholar

[73] Tsipis AC, Chaviara AT, Inorg. Chem. 43: 1273, (2004).

Google Scholar