Combustion Characteristics of Composite Solid Propellants Containing Different Coated Aluminum Nanopowders

Article Preview

Abstract:

Aluminum nanopowders coated with oleic acid (nmAl+OA), perfluorotetradecanoic acid (nmAl+PA) and nickel acetylacetonate (nmAl+NA) were prepared. The combustion characteristics of hydroxyl terminated polybutadiene (HTPB) composite solid propellants containing different coated aluminum nanpowders were investigated. The result shows that the burning rate of the propellant sample containing nmAl+NA is the highest at different pressure, the maximum burning rate is up to 26.13 mm·s-1 at 15 MPa. The burning rates of propellant samples containing nmAl+OA and nmAl+PA are almost the same at different pressures, and higher than the propellant samples containing untreated aluminum nanopowders only at the pressure range of 10 ~ 15 MPa. The flame brightness of different propellants under different pressure is not the same. The flame brightness is increased with the pressure increasing. The flame center zone brightness of the propellant containing nmAl+PA and nmAl+NA is brighter under 4 MPa, and the brightness of nmAl+NA is the brightest. The surface coating of aluminum nanopowder has little effect on the combustion flame temperature of solid propellant. The burning surface temperature increases with the pressure increasing.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

200-211

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Brousseau, C.J. Anderson, Nanometric Aluminum in Explosives, Propellants, Explos., Pyrotech. 27(2002)300-306.

DOI: 10.1002/1521-4087(200211)27:5<300::aid-prep300>3.0.co;2-#

Google Scholar

[2] A. Gromov, Y. Strokova, A. Kabardin, A. Vorozhtsov, U. Teipe, Experimental study of the effect of metal nanopowders on the decomposition of HMX, AP and AN, Propellants, Explos., Pyrotech. 34(2009) 506-512.

DOI: 10.1002/prep.200800030

Google Scholar

[3] N. Muravyev, Y. Frolov, A. Pivkina, K. Monogarov, D. Ivanov, D. Meerov, I. Fomenkov, Combustion of energetic systems based on HMX and aluminum: influence of particle size and mixing technology, Cent. Eur. J. Energ. Mater. 6(2009) 195-210.

DOI: 10.1016/b978-0-12-802710-3.00009-x

Google Scholar

[4] R.W. Armstrong, B. Baschung, D.W. Booth, M. Samirant, Enhanced propellant combustion with nanoparticles, Nano Lett. 3(2003) 253-255.

DOI: 10.1021/nl025905k

Google Scholar

[5] Y.F. Ivanov, M.N. Osmonoliev, V.S. Sedoi, V.A. Arkhipov, S.S. Bondarchuk, A.B. Vorozhtsov, A.G. Korotkikh, V.T. Kuznetsov. Production of ultra-fine powders and their use in high energetic compositions, Propellants, Explos., Pyrotech. 28(2003).

DOI: 10.1002/prep.200300019

Google Scholar

[6] B. Baschung, D. Grune, H.H. Licht, M. Samirant, Combustion phenomena of a solid propellant based on aluminium powder, Int. J. Energ. Mater. Chem. Propul. 5(2002) 219-225.

DOI: 10.1615/intjenergeticmaterialschemprop.v5.i1-6.230

Google Scholar

[7] M.L. Pantoya, J.J. Granier, Combustion behavior of highly energetic thermites: nano versus micron composites, Propellants, Explos., Pyrotech. 30(2005) 53-62.

DOI: 10.1002/prep.200400085

Google Scholar

[8] K. Sullivan, G. Young, M.R. Zachariah, Enhanced reactivity of nano-B/Al/CuO MIC's, Combust. Flame 156(2009) 302-309.

DOI: 10.1016/j.combustflame.2008.09.011

Google Scholar

[9] S. Chowdhury, K. Sullivan, N. Piekiel, L. Zhou, M.R. Zachariah, Diffusive vs explosive reaction at the nanoscale, J. Phys. Chem. C 114(2010) 9191-9195.

DOI: 10.1021/jp906613p

Google Scholar

[10] A. Pivkina, P. Ulyanova, Y. Frolov, S. Zavyalov, J. Schoonman, Nanomaterials for heterogeneous combustion, Propellants, Explos., Pyrotech. 29(2004) 39-48.

DOI: 10.1002/prep.200400025

Google Scholar

[11] G.V. Ivanov, F. Tepper, Activated, aluminum as a store energy source for propellant, Int. J. Energ. Mater. Chem. Propul. 4(1997) 636-645.

Google Scholar

[12] C.E. Aumann, G. L. Skofronick, J.A. Martin, Oxidation behavior of aluminum nanopowders, J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct. -Process., Meas., Phenom. 1995, 13(3): 1178-1183.

DOI: 10.1116/1.588232

Google Scholar

[13] M.A. Trunov, M. Schoenitz, X. Zhu, E.L. Dreizin, Effect of polymorphic phase transformations in Al2O3 film on oxidation kinetics of aluminum powders, Combust. Flame 40(2005) 310-318.

DOI: 10.1016/j.combustflame.2004.10.010

Google Scholar

[14] J. Sun, M.L. Pantoya, S.L. Simon, Dependence of size and size distribution on reactivity of aluminum nanoparticles in reactions with oxygen and MoO3, Thermochim. Acta 444(2006) 117-127.

DOI: 10.1016/j.tca.2006.03.001

Google Scholar

[15] A.B. Morgan, J.D. Wolf, E.A. Guliants, K.A. Shiral Fernando, W.K. Lewis, Heat release measurements on micron and nano-scale aluminum powders, Thermochim. Acta 488(2009) 1-9.

DOI: 10.1016/j.tca.2009.01.016

Google Scholar

[16] R.J. Jouet, A.D. Warren, D.M. Rosenberg, V.J. Bellitto, K. Park, M.R. Zachariah. Surface passivation of bare aluminum nanoparticles using perfluoroalkyl carboxylic acids, Chem. Mater. 17(2005) 2987-2996.

DOI: 10.1021/cm048264y

Google Scholar

[17] P. Brousseau, S. Côté, N. Ouellet, Preliminary testing of energetic materials containing aluminum nano-powders, 25th TTCP WPN/TP-4 Meeting, Energetic Materials and Propulsion Technology Technical Workshop, Salisbury, South Australia, 6-7 April (2000).

Google Scholar

[18] D.E.G. Jones, P.D. Lightfoot, R.C. Fouchard, Thermal characterization of passivated nanometer size aluminium powders III, Canadian Explosives Research Laboratory, Report EXP 2001-16, July (2001).

Google Scholar

[19] E.G. Yao, F.Q. Zhao, H.X. Gao, S.Y. Xu, R.Z. Hu, H.X. Hao, T. An, Q. Pei, L.B. Xiao, Thermal behavior and non-isothermal decomposition reaction kinetics of aluminum nanopowders coated with an oleic acid/hexogen composite system, Acta Phys. -Chim. Sin. 28(2012).

Google Scholar

[20] M. Cliff, F. Tepper, V. Lisetsky, Ageing characteristics of Alex nanosize aluminum, 37th AIAA/ASME/SAE/ASEE JPC Conference & Exhibit, Salt Lake City, Utah, 8-11 July (2001).

DOI: 10.2514/6.2001-3287

Google Scholar

[21] Y.S. Kwon, A.A. Gromov, J.I. Strokova, Passivation of the surface of aluminum nanopowders by protective coatings of the different chemical origin, Appl. Surf. Sci. 253(2007) 5558-5564.

DOI: 10.1016/j.apsusc.2006.12.124

Google Scholar

[22] R.J. Jouet, R.H. Granholm, H.W. Sandusky, A.D. Warren, Preparation and shock reactivity analysis of novel perfluoroalkyl-coated aluminum nanocomposites, AIP Conf. Proc. 845(2006) 1527-1530.

DOI: 10.1063/1.2263615

Google Scholar

[23] T.J. Foley, C.E. Johnson, K.T. Higa, Inhibition of oxide formation on aluminum nanoparticles by transition metal coating, Chem. Mater. 17(2005) 4086-4091.

DOI: 10.1021/cm047931k

Google Scholar

[24] Q.L. Yan, X.J. Li, Y. Wang, W.H. Zhang, F.Q. Zhao, Combustion mechanism of double-base propellant containing nitrogen heterocyclic nitroamines (i): the effect of heat and mass transfer to the burning characteristics, Combust. Flame 156(2009).

DOI: 10.1016/j.combustflame.2008.12.004

Google Scholar

[25] Q.L. Yan, Z.W. Song, X.B. Shi, Z.Y. Yang, X.H. Zhang, Combustion mechanism of double-base propellant containing nitrogen heterocyclic nitroamines (II): The temperature distribution of the flame and its chemical structure, Acta Astronaut. 64(2009).

DOI: 10.1016/j.actaastro.2008.10.013

Google Scholar

[26] C.D. Yarrington, S.F. Son, T.J. Foley, Combustion of Silicon/Teflon/Viton and aluminum/Teflon/Viton energetic composites, J. Propul. Power 26(2010) 734-743.

DOI: 10.2514/1.46182

Google Scholar

[27] D.T. Osborne, M.L. Pantoya. Effect of Al particle size on the thermal degradation of Al/Teflon mixtures, Combust. Sci. Technol. 179(2007) 1467-1480.

DOI: 10.1080/00102200601182333

Google Scholar

[28] K.W. Watson, M.L. Pantoya, V.I. Levitas, Fast reactions with nano-and micrometer aluminum: a study on oxidation versus fluorination, Combust. Flame 155(2008) 619-634.

DOI: 10.1016/j.combustflame.2008.06.003

Google Scholar

[29] K. Kappagantula, M.L. Pantoya, Experimentally measured thermal transport properties of aluminum-polytetrafluoroethylene nanocomposites with grapheme and carbon nanotube additives, Int. J. Heat Mass Transfer 55(2012) 817-824.

DOI: 10.1016/j.ijheatmasstransfer.2011.10.026

Google Scholar