[1]
P. Brousseau, C.J. Anderson, Nanometric Aluminum in Explosives, Propellants, Explos., Pyrotech. 27(2002)300-306.
DOI: 10.1002/1521-4087(200211)27:5<300::aid-prep300>3.0.co;2-#
Google Scholar
[2]
A. Gromov, Y. Strokova, A. Kabardin, A. Vorozhtsov, U. Teipe, Experimental study of the effect of metal nanopowders on the decomposition of HMX, AP and AN, Propellants, Explos., Pyrotech. 34(2009) 506-512.
DOI: 10.1002/prep.200800030
Google Scholar
[3]
N. Muravyev, Y. Frolov, A. Pivkina, K. Monogarov, D. Ivanov, D. Meerov, I. Fomenkov, Combustion of energetic systems based on HMX and aluminum: influence of particle size and mixing technology, Cent. Eur. J. Energ. Mater. 6(2009) 195-210.
DOI: 10.1016/b978-0-12-802710-3.00009-x
Google Scholar
[4]
R.W. Armstrong, B. Baschung, D.W. Booth, M. Samirant, Enhanced propellant combustion with nanoparticles, Nano Lett. 3(2003) 253-255.
DOI: 10.1021/nl025905k
Google Scholar
[5]
Y.F. Ivanov, M.N. Osmonoliev, V.S. Sedoi, V.A. Arkhipov, S.S. Bondarchuk, A.B. Vorozhtsov, A.G. Korotkikh, V.T. Kuznetsov. Production of ultra-fine powders and their use in high energetic compositions, Propellants, Explos., Pyrotech. 28(2003).
DOI: 10.1002/prep.200300019
Google Scholar
[6]
B. Baschung, D. Grune, H.H. Licht, M. Samirant, Combustion phenomena of a solid propellant based on aluminium powder, Int. J. Energ. Mater. Chem. Propul. 5(2002) 219-225.
DOI: 10.1615/intjenergeticmaterialschemprop.v5.i1-6.230
Google Scholar
[7]
M.L. Pantoya, J.J. Granier, Combustion behavior of highly energetic thermites: nano versus micron composites, Propellants, Explos., Pyrotech. 30(2005) 53-62.
DOI: 10.1002/prep.200400085
Google Scholar
[8]
K. Sullivan, G. Young, M.R. Zachariah, Enhanced reactivity of nano-B/Al/CuO MIC's, Combust. Flame 156(2009) 302-309.
DOI: 10.1016/j.combustflame.2008.09.011
Google Scholar
[9]
S. Chowdhury, K. Sullivan, N. Piekiel, L. Zhou, M.R. Zachariah, Diffusive vs explosive reaction at the nanoscale, J. Phys. Chem. C 114(2010) 9191-9195.
DOI: 10.1021/jp906613p
Google Scholar
[10]
A. Pivkina, P. Ulyanova, Y. Frolov, S. Zavyalov, J. Schoonman, Nanomaterials for heterogeneous combustion, Propellants, Explos., Pyrotech. 29(2004) 39-48.
DOI: 10.1002/prep.200400025
Google Scholar
[11]
G.V. Ivanov, F. Tepper, Activated, aluminum as a store energy source for propellant, Int. J. Energ. Mater. Chem. Propul. 4(1997) 636-645.
Google Scholar
[12]
C.E. Aumann, G. L. Skofronick, J.A. Martin, Oxidation behavior of aluminum nanopowders, J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct. -Process., Meas., Phenom. 1995, 13(3): 1178-1183.
DOI: 10.1116/1.588232
Google Scholar
[13]
M.A. Trunov, M. Schoenitz, X. Zhu, E.L. Dreizin, Effect of polymorphic phase transformations in Al2O3 film on oxidation kinetics of aluminum powders, Combust. Flame 40(2005) 310-318.
DOI: 10.1016/j.combustflame.2004.10.010
Google Scholar
[14]
J. Sun, M.L. Pantoya, S.L. Simon, Dependence of size and size distribution on reactivity of aluminum nanoparticles in reactions with oxygen and MoO3, Thermochim. Acta 444(2006) 117-127.
DOI: 10.1016/j.tca.2006.03.001
Google Scholar
[15]
A.B. Morgan, J.D. Wolf, E.A. Guliants, K.A. Shiral Fernando, W.K. Lewis, Heat release measurements on micron and nano-scale aluminum powders, Thermochim. Acta 488(2009) 1-9.
DOI: 10.1016/j.tca.2009.01.016
Google Scholar
[16]
R.J. Jouet, A.D. Warren, D.M. Rosenberg, V.J. Bellitto, K. Park, M.R. Zachariah. Surface passivation of bare aluminum nanoparticles using perfluoroalkyl carboxylic acids, Chem. Mater. 17(2005) 2987-2996.
DOI: 10.1021/cm048264y
Google Scholar
[17]
P. Brousseau, S. Côté, N. Ouellet, Preliminary testing of energetic materials containing aluminum nano-powders, 25th TTCP WPN/TP-4 Meeting, Energetic Materials and Propulsion Technology Technical Workshop, Salisbury, South Australia, 6-7 April (2000).
Google Scholar
[18]
D.E.G. Jones, P.D. Lightfoot, R.C. Fouchard, Thermal characterization of passivated nanometer size aluminium powders III, Canadian Explosives Research Laboratory, Report EXP 2001-16, July (2001).
Google Scholar
[19]
E.G. Yao, F.Q. Zhao, H.X. Gao, S.Y. Xu, R.Z. Hu, H.X. Hao, T. An, Q. Pei, L.B. Xiao, Thermal behavior and non-isothermal decomposition reaction kinetics of aluminum nanopowders coated with an oleic acid/hexogen composite system, Acta Phys. -Chim. Sin. 28(2012).
Google Scholar
[20]
M. Cliff, F. Tepper, V. Lisetsky, Ageing characteristics of Alex nanosize aluminum, 37th AIAA/ASME/SAE/ASEE JPC Conference & Exhibit, Salt Lake City, Utah, 8-11 July (2001).
DOI: 10.2514/6.2001-3287
Google Scholar
[21]
Y.S. Kwon, A.A. Gromov, J.I. Strokova, Passivation of the surface of aluminum nanopowders by protective coatings of the different chemical origin, Appl. Surf. Sci. 253(2007) 5558-5564.
DOI: 10.1016/j.apsusc.2006.12.124
Google Scholar
[22]
R.J. Jouet, R.H. Granholm, H.W. Sandusky, A.D. Warren, Preparation and shock reactivity analysis of novel perfluoroalkyl-coated aluminum nanocomposites, AIP Conf. Proc. 845(2006) 1527-1530.
DOI: 10.1063/1.2263615
Google Scholar
[23]
T.J. Foley, C.E. Johnson, K.T. Higa, Inhibition of oxide formation on aluminum nanoparticles by transition metal coating, Chem. Mater. 17(2005) 4086-4091.
DOI: 10.1021/cm047931k
Google Scholar
[24]
Q.L. Yan, X.J. Li, Y. Wang, W.H. Zhang, F.Q. Zhao, Combustion mechanism of double-base propellant containing nitrogen heterocyclic nitroamines (i): the effect of heat and mass transfer to the burning characteristics, Combust. Flame 156(2009).
DOI: 10.1016/j.combustflame.2008.12.004
Google Scholar
[25]
Q.L. Yan, Z.W. Song, X.B. Shi, Z.Y. Yang, X.H. Zhang, Combustion mechanism of double-base propellant containing nitrogen heterocyclic nitroamines (II): The temperature distribution of the flame and its chemical structure, Acta Astronaut. 64(2009).
DOI: 10.1016/j.actaastro.2008.10.013
Google Scholar
[26]
C.D. Yarrington, S.F. Son, T.J. Foley, Combustion of Silicon/Teflon/Viton and aluminum/Teflon/Viton energetic composites, J. Propul. Power 26(2010) 734-743.
DOI: 10.2514/1.46182
Google Scholar
[27]
D.T. Osborne, M.L. Pantoya. Effect of Al particle size on the thermal degradation of Al/Teflon mixtures, Combust. Sci. Technol. 179(2007) 1467-1480.
DOI: 10.1080/00102200601182333
Google Scholar
[28]
K.W. Watson, M.L. Pantoya, V.I. Levitas, Fast reactions with nano-and micrometer aluminum: a study on oxidation versus fluorination, Combust. Flame 155(2008) 619-634.
DOI: 10.1016/j.combustflame.2008.06.003
Google Scholar
[29]
K. Kappagantula, M.L. Pantoya, Experimentally measured thermal transport properties of aluminum-polytetrafluoroethylene nanocomposites with grapheme and carbon nanotube additives, Int. J. Heat Mass Transfer 55(2012) 817-824.
DOI: 10.1016/j.ijheatmasstransfer.2011.10.026
Google Scholar