Functionalized Gold Nanoparticles Coated Polymer Spheres as SERS Substrate for the Detection of TNT Explosives

Article Preview

Abstract:

In this paper, we fabricated the 4-aminobenzenethiol modified gold nanoparticles onto polymer spheres as SERS substrate to selectively detect 2,4,6-trinitrotoluene (TNT) explosives. The gold nanoseeds were fixed on polymer surface by reduction of HAuCl4·3H2O with sodium citrate. About 60~100nm nanoparticles were formed from the previous seeds and self-assembled by 4-aminobenzenethiol. The functionalized gold nanopartilces aggregation coated on large polymer sphere surface not only absorbed more TNT molecules via conjugation system, but also generated numerous "hot spots". It was demonstrated that this substrate displayed high SERS activity for TNT detection. It could also be anticipated that the aforementioned material would be used for fast and sensitive SERS detection of TNT in real-world situation. Keywords: gold nanopartilces, SERS, TNT, functionalization

You might also be interested in these eBooks

Info:

Periodical:

Pages:

366-370

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Nie, S.R. Emory, Probing single molecules and single nanoparticles by Surface-Enhanced Raman Scattering, Science. 275 (1997) 1102-1106.

DOI: 10.1126/science.275.5303.1102

Google Scholar

[2] J.F. Li, Y.F. Huang, Y. Ding, Z.L. Yang, S.B. Li, X.S. Zhou, F. R. Fan, W. Zhang, Z.Y. Zhou, D.Y. Wu, B. Ren, Z.L. Wang, Z.Q. Tian, Shell-isolated nanoparticle-enhanced Raman spectroscopy, Nature. 7287 (2010) 392-395.

DOI: 10.1038/nature08907

Google Scholar

[3] D.J. Maxwell, J.R. Taylor, S. Nie, Self-Assembled nanoparticle probes for recognition and detection of biomolecules, J. Am. Chem. Soc. 124 (2002) 9606-9612.

DOI: 10.1021/ja025814p

Google Scholar

[4] J.M. Sylvia, J.A. Janni, J.D. Klein, K.M. Spencer, Surface-Enhanced Raman detection of 2, 4-dinitrotoluene impurity vapor as a marker to locate landmines, Anal. Chem. 72 (2002) 5834-5840.

DOI: 10.1021/ac0006573

Google Scholar

[5] L.L. Qu, Y.T. Li, D.W. Li, J.Q. Xue, S.F. John, Y.T. Long, Humic acids-based one-step fabrication of SERS substrates for detection of polycyclic aromatic hydrocarbons, Analyst. 138 (2013) 1523-1528.

DOI: 10.1039/c2an36764e

Google Scholar

[6] Y. Gao, P. Jiang, L. Song, J.X. Wang, L.F. Liu, Studies on silver nanodecahedrons synthesized by PVP-assisted N, N-dimethylformamide (DMF) reduction, J. Cryst. Growth. 289 (2006) 376-380.

DOI: 10.1016/j.jcrysgro.2005.11.123

Google Scholar

[7] M.J. Mulvihill, X.Y. Ling, J. Henzie, P.D. Yang, Anisotropic etching of silver nanoparticles for plasmonic structures capable of single-particle SERS, J. Am. Chem. Soc. 132 (2010) 268-274.

DOI: 10.1021/ja906954f

Google Scholar

[8] L.H. Lu, A. Kobayashi, K.K. Tawa, Y.K.H. Ozaki, Silver nanoplates with special shapes: controlled synthesis and their surface plasmon resonance and surface-enhanced Raman scattering properties, Chem. Mater. 18 (2006) 4894-4901.

DOI: 10.1021/cm0615875

Google Scholar

[9] W.E. Doering, S.M. Nie, Spectroscopic tags using dye-embedded nanoparticles and Surface-Enhanced Raman Scattering, Anal. Chem. 75 (2003) 6171-6176.

DOI: 10.1021/ac034672u

Google Scholar

[10] L. Brenda, G. Sanchez, S. Pattanawit, T.J. Lamkin, R.J. Hickey, Z. Fakhraai, S.H. Link, S.J. Park, Spiky gold nanoshells: synthesis and enhanced scattering properties, J. Phys. Chem. C. 116 (2012) 10318–10324.

DOI: 10.1021/jp300009b

Google Scholar

[11] Y.G. Sun, Y.N. Xia, Shape-controlled synthesis of gold and silver nanoparticles, Science. 298 (2002) 2176-2179.

DOI: 10.1126/science.1077229

Google Scholar

[12] D.H. Seo, C. Yoo, I.S. Chung, S.M. Park, S. Ryu, H. Song, Shape adjustment between multiply twinned and single-crystalline polyhedral gold nanocrystals: decahedra, icosahedra, and truncated tetrahedra, J. Phys. Chem. C. 112 (2008) 2469-2475.

DOI: 10.1021/jp7109498

Google Scholar

[13] Y. Yang, J. Shi, G. Kawamura, M. Nogami, Preparation of Au–Ag, Ag–Au core–shell bimetallic nanoparticles for surface-enhanced Raman scattering , Scripta Mater. 58 (2008) 862-865.

DOI: 10.1016/j.scriptamat.2008.01.017

Google Scholar

[14] W.E. Pereira, D.L. Short, D.B. Manigold, P.K. Roscio, Isolation and characterization of TNT and its metabolites in groundwater by gas chromatograph-mass spectrometer-computer techniques, Bull. Environ. Contam. Toxicol. 21 (1979) 554-562.

DOI: 10.1007/bf01685469

Google Scholar

[15] M.M. Laura, T. Pete, H.H. Herbert, Evaluation of suspected interferents for TNT detection by ion mobility spectrometry, Talanta. 54 (2001) 171-179.

DOI: 10.1016/s0039-9140(00)00663-9

Google Scholar

[16] J.S. Yang, T.M. Swager, Fluorescent porous polymer films as TNT chemosensors:  electronic and structural effects, J. Am. Chem. Soc. 120 (1998) 11864-11873.

DOI: 10.1021/ja982293q

Google Scholar

[17] E.M.A. Ali, H.G.M. Edwards, I.J. Scowen, Raman spectroscopy and security applications: the detection of explosives and precursors on clothing, J. Raman Spectrosc. 40 (2009) 2009-(2014).

DOI: 10.1002/jrs.2360

Google Scholar

[18] S.S.R. Dasary, A.K. Singh, D. Senapati, H.T. Yu, P.C. Ray, Gold nanoparticle based label-free SERS probe for ultrasensitive and selective detection of trinitrotoluene, J. Am. Chem. Soc. 131 (2009) 13806–13812.

DOI: 10.1021/ja905134d

Google Scholar