Studies on the Preparation and Gas Sensing Properties of SnO2 Nanostructures at Room Temperature

Article Preview

Abstract:

The SnO2 nanostructures have been synthesized by carbon-assisted growth at 800 oC for 3 hours. Using high pure tin powder as the source materials. The synthesized products were investigated by stereo microscope, X-rays diffraction (XRD) and scanning electron microscopy (SEM). XRD patterns show that the prepared products are tetragonal-structures with the lattice constant a = 0.4718 nm and c = 0.3187 nm. SEM images indicate that SnO2 nanowires are about tens of micrometers in length, 80-100 nm in width. The diameter of SnO2 nanoparticles vary from 10 nm to 100 nm. The synthesized products are high sensitivity and fast response time to ethanol gas at room temperature.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 93-94)

Pages:

227-230

Citation:

Online since:

January 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Rosental, A. Tarre, A. Gerst, J. Sundqvist, A. Harsta, A. Aidla, J. Aarik, V. Sammelselg and T. Uustare: Sens. Actuators. B Vol. 93 (2003), p.552.

DOI: 10.1016/s0925-4005(03)00236-3

Google Scholar

[2] F. Gu, S.F. Wang, M.K. Lu, Y.X. Qi, G.J. Zhou, D. Xu and D.R. Yuan: Opt. Mater. Vol. 25 (2004), p.59.

Google Scholar

[3] C. Zheng, Y. Chu, Y. Dong, Y. Zhan and G. Wang: Mater. Lett. Vol. 59 (2005), p. (2018).

Google Scholar

[4] J.X. Wang, D.F. Liu, X.Q. Yan, H.J. Yuan, L.J. Ci, Z.P. Zhou, Y. Gao, L. Song, L.F. Liu, W.Y. Zhou, G. Wang and S.S. Xie: Solid State Commun. Vol. 130 (2004), p.89.

DOI: 10.1016/j.ssc.2004.01.003

Google Scholar

[5] Z. Huang and C. Chai: Mater. Lett. Vol. 61 (2007), p.5113.

Google Scholar

[6] H. Xiangming, Z. Bing, G. Shaokang, L. Jindun, Z. Xiang and C. Rongfeng: J. Alloys. Comp. Vol. 461 (2008), p. L26.

Google Scholar

[7] H.W. Kim and S.H. Shim: J. Alloys. Comp. Vol 426 (2006), p.286.

Google Scholar

[8] Y-J. Ma, F. Zhou, L. Lu and Z. Zhang: Solid State Commun. Vol. 130 (2004), p.313.

Google Scholar

[9] S.G. Ansari, P. Boroojerdian, S.R. Sainkar, R.N. Karekar, R.C. Aiyer and S.K. Kulkarni: J. Phys. Chem. Vol. 64 (2003), p.1037.

Google Scholar

[10] J. Kappler, A. Tomescu, N. Barsan and U. Weimar: Thin Solid Films. Vol. 391 (2001), p.186.

DOI: 10.1016/s0040-6090(01)00980-4

Google Scholar

[11] K. Jain, R.P. Pant and S.T. Lakshmikumar: Sens. Actuators. B Vol. 113 (2006), p.823.

Google Scholar

[12] P. Chumninok, P. Kasian, P. Limsuwan, U. Tipparach, S. Samran, L. Chow and S. Pukird: Adv. Mater. Res. Vol. 55 (2008), p.637.

DOI: 10.4028/www.scientific.net/amr.55-57.633

Google Scholar

[13] J. Zhang, S. Wang, Y. Wang, M. Xu, H. Xia, S. Zhang, W. Huang, X. Guo and S. Wu: Sens. Actuators. B Vol. 139 (2009), p.369.

Google Scholar

[14] A.V. Kadu, S.V. Jagtap and G.N. Chaudhari: Curr. Appl. Phys. Vol. 9 (2009), p.1246.

Google Scholar

[15] Y. Chen, X. Cui, K. Zhang, D. Pan, S. Zhang, B. Wang and J.G. Hou: Chem. Lett. Vol. 369 (2003), p.16.

Google Scholar

[16] L. Xi, D. Qian, X. Tang and C. Chen: Mater. Chem. Phys. Vol. 108 (2008), p.232.

Google Scholar

[17] A. Chaturvedi, V.N. Mishra, R. Dwivedi and S.K. Srivastava: J. Micr. Vol. 30 (1999), p.259.

Google Scholar

[18] H. Wang, J. Liang, H. Fan, B. Xi, M. Zhang, S. Xiong, Y. Zhu and Y. Qian: J. Solid State Chem. Vol. 181 (2008), p.122.

Google Scholar