Charge Transfer Mechanism in Organic Memory Device

Article Preview

Abstract:

In this paper, the conduction mechanism in organic bistable memory device was investigated by both experimental and theoretical method. The current voltage (J-V) characteristics showed the electrical bistable properties between an initial low-conductivity state and a high-conductivity state upon application of an external electric field at room temperature. The current transition exhibited a very narrow voltage range that causes an abrupt increase of current. The on-state and the off-state were proposed by space-charge-limited current and thermionic emission model, respectively. That supported by the experimental data to explained the charge transfer mechanism in organic memory device.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 93-94)

Pages:

235-238

Citation:

Online since:

January 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. I. Son, C. H. You, W. T. Kim, et al., Appl. Phys. Lett. Vol. 94 (2009), p.132103.

Google Scholar

[2] K. S. Yook, S. O. Jeon, C. W. Joo, et al., Organic Electronics. Vol. 10 (2009), pp.48-52.

Google Scholar

[3] J. Chen and D. Ma, J. Appl. Phys. Vol. 100 (2006), p.034512.

Google Scholar

[4] G. Liu, Q. -D. Ling, E. -T. Kang, et al., J. Appl. Phys. Vol. 102 (2007), p.024502.

Google Scholar

[5] V.S. Reddy, S. Karak, S.K. Ray, et al., Organic Electronics. Vol. 10 (2009), pp.138-144.

Google Scholar

[6] L. Li, Q. -D. Ling, S. -L. Lim, et al., Organic Electronics. Vol. 8 (2007), pp.401-406.

Google Scholar

[7] S. Pyo, L. Ma, J. He, et al., J. Appl. Phys. Vol. 98 (2005), p.054303.

Google Scholar

[8] J. He, L. Ma, J. Wu, et al., J. Appl. Phys. Vol. 97 (2005), p.064507.

Google Scholar

[9] S. J. Lee, J. -R. Koo, S. J. Kwon, et al., Microelectronic Engineering. Vol. 85 (2008), pp.2388-2392.

Google Scholar

[10] J. H. Ham, D. H. Oh, S. H. Cho, et al., Appl. Phys. Lett. Vol. 94 (2009), p.112101.

Google Scholar

[11] K.S. Yook, J. Y. Lee, S.H. Kim, et al., Appl. Phys. Lett. Vol. 92 (2008), p.223305.

Google Scholar

[12] L. Ma, J. Liu, S. Pyo, et al., Appl. Phys. Lett. Vol. 80 (2002), p.362.

Google Scholar

[13] Q. -D. Ling, D. -J. Liaw, C. Zhu, et al., Progress in Polymer Science. Vol. 33 (2008), pp.917-978.

Google Scholar

[14] S.M. Sze, Kwok K. Ng, Physics of semiconductor devices, 3 rd ed. Hoboken, NJ: WileyInterScience (2007).

Google Scholar

[15] K.L. Wang, B. Lai, M. Lu, et al., Thin Solid Films. Vol. 363 (2000), pp.17-181.

Google Scholar

[16] Y. Xia, W. He, L. Chen, et al., Appl. Phys. Lett. Vol. 90 (2007), p.022907.

Google Scholar

[17] L. Ma, S. Pyo, J. Ouyang, et al., Appl. Phys. Lett. Vol. 82 (2003), p.1419.

Google Scholar

[18] V. S. Reddy, S. Karak, and A. Dhar, Appl. Phys. Lett. Vol. 94 (2009), p.173304.

Google Scholar

[19] J. -G. Park, G. -S. Lee and K. -S. Chae, Journal of the Korean Physical Society. Vol. 48 (2006), No. 6, p.1505.

Google Scholar

[20] L. P. Ma, J. Liu, and Y. Yang, Appl. Phys. Lett. Vol. 80 (2002), p.2997.

Google Scholar

[21] F. Verbakel, S. C. J. Meskers, and R. A. J. Janssen, Appl. Phys. Lett. Vol. 91(2007), p.192103.

Google Scholar