Synthesis and Characterizations of Strontium Substituted Hydroxyapatite Thin Films

Article Preview

Abstract:

Strontium substituted hydroxyapatite(SrHAp) were fabricated both in the form of powder as reference and thin film by using inorganic precursor reaction. The sol-gel process has been used for the deposition of SrHAp layer on stainless steal 316L substrate by spin coating technique, after that the films were annealed in air at various temperatures. The chemical composition of SrHAp is represented (SrxCa1-x)5(PO4)3OH, where x is equal to 0, 0.5 and 1.0. Investigations of the phase structure of SrHAp were carried out by using X-ray diffraction technique (XRD). The results showed that strontium is incorporated into hydroxyapatite where its substitution for calcium increases in the lattice parameters, and Sr3(PO4)2 can be detected at 900°C. The SEM micrographs showed that SrHAp films exhibited porous structure before develop to a cross-linking structure.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 93-94)

Pages:

231-234

Citation:

Online since:

January 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] E. A. Monroe, W. Votava, D. B. Bass and J. McMullen: J. Dental. Res. Vol. 50 (1971), p.860.

Google Scholar

[2] T. Naddari, B. Hamdi, J.M. Savariault, H.E. Feki and A.B. Salah: Mater Res Bull Vol. 38 (2003), p.221.

Google Scholar

[3] T.J. Wabster, E.A. Massa-Schlueter, J.L. Smith and E.B. Slamovich: Biomaterials Vol. 25 (2004), p.2111.

Google Scholar

[4] S. Kannan, J.M.G. Ventura, J.M.F. Ferreira: Ceram. Inter. Vol. 33 (2007), p.1489.

Google Scholar

[5] S. G. Dahl, P. Allain, P. J. Marie, Y. Mauras, G. Boivin, P. Ammann,Y. Tsouderos, P. D. Delmas and C. Christiansen: Bone Vol. 28 (2001), p.446.

DOI: 10.1016/s8756-3282(01)00419-7

Google Scholar

[6] W. Xue, H.L. Hosick, A. Bandyopadhyay, S. Bose, C. Ding, K.D.C. Cheung and W.W. Lu: Surf. Coat. Tech. Vol. 201 (2007), p.4685.

Google Scholar

[7] C. Renghini, E. Girardin, A.S. Fomin, A. Manescu, A. Sabbioni, S.M. Barinov, V.S. Komlev, G. Albertini and F. Fiori: Mater. Sci. Eng. B Vol. 152 (2008), p.86.

DOI: 10.1016/j.mseb.2008.06.016

Google Scholar

[8] C. Capuccini, P. Torricelli, F. Sima, E. Boanini, C. Ristoscu, B. Bracci, G. Socol, M. Fini, I.N. Mihailescu and A. Bigi: Acta Biomater. Vol. 4 (2008), p.1885.

DOI: 10.1016/j.actbio.2008.05.005

Google Scholar

[9] C.F. Koch , S. Johnson , D. Kumar , M. Jelinek ,D.B. Chrisey , A. Doraiswamy ,C. Jin , R.J. Narayan and I.N. Mihailescu: Mater. Sci. Eng. C Vol. 27 (2007), p.484.

DOI: 10.1016/j.msec.2006.05.025

Google Scholar

[10] B. Feddes, J.G.C. Wolke, A.M. Vredenberg and J.A. Jansen: Biomaterials Vol. 25 (2004), p.633.

Google Scholar

[11] A. Balamuruga, G. Balossier, P. Torres, J. Michel and J.M.F. Ferreira: Mater. Sci. Eng. C Vol. 29 (2009), p.1006.

Google Scholar

[12] L. Gan and R. Pilliar: Biomaterials Vol. 25 (2004), p.5303.

Google Scholar

[13] H.W. Kim, Y.H. Koh, YM Kong, J.G. Kang and H.E. Kim: J. Mater. Sci. Vol. 15 (2004), p.1129.

Google Scholar

[13] H.W. Kim, Y.H. Koh, YM Kong, J.G. Kang and H.E. Kim: J. Mater. Sci. Vol. 15 (2004), p.1129 (a) (b) (c) (d) Fig. 4 SEM micrographs of SrHAp films annealed at (a) 300ºC, (b) 500ºC, (c) 700ºC and (d) 900ºC.

Google Scholar