[1]
Y. Zhang, G. Li, X. Yang, H. Yang, Z. Lu, R. Chen, Monoclinic BiVO4 micro–/nanostructures: Microwave and ultrasonic wave combined synthesis and their visible–light photocatalytic activities, J. Alloy. Compd. 551 (2013) 544–550.
DOI: 10.1016/j.jallcom.2012.11.017
Google Scholar
[2]
A. Walsh, Y. Yan, M.N. Huda, M.M. Al–Jassim, S. –H. Wei, Band edge electronic structure of BiVO4: Elucidating the role of the Bi s and V d orbitals, Chem. Mater. 21 (2009) 547–551.
DOI: 10.1021/cm802894z
Google Scholar
[3]
J.B. Liu, H. Wang, S. Wang, H. Yan, Hydrothermal preparation of BiVO4 powders, Mat. Sci. Eng. B 104 (2003) 36–39.
Google Scholar
[4]
A. Zhang, J. Zhang, Hydrothermal processing for obtaining of BiVO4 nanoparticles, Mater. Lett. 63 (2009) 1939–(1942).
Google Scholar
[5]
L.S. Kumari, P.P. Rao, A.N.P. Radhakrishnan, V. James, S. Sameera, P. Koshy, Brilliant yellow color and enhanced NIR reflectance of monoclinic BiVO4 through distortion in VO43- tetrahedral, Sol. Energ. Mat. Sol. C 112 (2013) 134–143.
DOI: 10.1016/j.solmat.2013.01.022
Google Scholar
[6]
J. Panpranot, L. Nakkararuang, B. Ngamsom, P. Praserthdama, Synthesis, characterization, and catalytic properties of Pd and Pd–Ag catalysts supported on nanocrystalline TiO2 prepared by the solvothermal method, Catal. Lett. 103 (2005) 53–58.
DOI: 10.1007/s10562-005-6502-x
Google Scholar
[7]
X. Kong, D. Hu, Y. Ishikawa, Y. Tanaka, Q. Feng, Solvothermal soft chemical synthesis and characterization of nanostructured Ba1-x(Bi0. 5K0. 5)xTiO3 platelike particles with crystal–axis orientation, Chem. Mater. 23 (2011) 3978–3986.
DOI: 10.1021/cm2015252
Google Scholar
[8]
Joint Committee on Powder Diffraction Standards (JCPDS). Powder Diffraction File, Card No. 14–0133, Swarthmore, PA.
Google Scholar
[9]
Joint Committee on Powder Diffraction Standards (JCPDS). Powder Diffraction File, Card No. 14–0688, Swarthmore, PA.
Google Scholar
[10]
A. Zhang, J. Zhang, N. Cui, X. Tie, Y. An, L. Li, Effects of pH on hydrothermal synthesis and characterization of visible–light–driven BiVO4 photocatalyst, J. Mol. Catal. A–Chem. 304 (2009) 28–32.
DOI: 10.1016/j.molcata.2009.01.019
Google Scholar
[11]
S. Sarkar, K.K. Chattopadhyay, Size–dependent optical and dielectric properties of BiVO4 nanocrystals, Physica E 44 (2012) 1742–1746.
DOI: 10.1016/j.physe.2011.11.019
Google Scholar
[12]
S. Obregón, A. Caballero, G. Colón, Hydrothermal synthesis of BiVO4: Structural and morphological influence on the photocatalytic activity, Appl. Catal. B–Environ. 117–118 (2012) 59–66.
DOI: 10.1016/j.apcatb.2011.12.037
Google Scholar
[13]
L. Ma, W. –H. Li, J. –H. Luo, Solvothermal synthesis and characterization of well–dispersed monoclinic olive–like BiVO4 aggregates. Mater. Lett. 102–103 (2013) 65–67.
DOI: 10.1016/j.matlet.2013.03.111
Google Scholar
[14]
R. Woldseth, X–ray Energy Spectrometry, Kevex Corp, Califonia, (1973).
Google Scholar
[15]
U.M.G. Pérez, S.S. –Guzmán, A.M. –de la Cruz, U.O. Méndez, Photocatalytic activity of BiVO4 nanospheres obtained by solution combustion synthesis using sodium carboxymethylcellulose, J. Mol. Catal. A–Chem. 335 (2011) 169–175.
DOI: 10.1016/j.molcata.2010.11.030
Google Scholar
[16]
D. Ke, T. Peng, L. Ma, P. Cai, K. Dai, Effects of hydrothermal temperature on the microstructures of BiVO4 and its photocatalytic O2 evolution activity under visible light, Inorg. Chem. 48 (2009) 4685–4691.
DOI: 10.1021/ic900064m
Google Scholar