[1]
D.E. Macphee, A.H. Taylor, C.J. Black, Cements incorporating brown coal fly ash from the Latrobe Valley region of Victoria, Australia. Cement and Concrete Research; (United States). 23: 3: (1993)507-517.
DOI: 10.1016/0008-8846(93)90001-p
Google Scholar
[2]
T.J. Brown, K. Sagoe-Crenstil (2007) Perfomance of Concrete Incorparating Latrobe Valley Brown Coal Ash. Paper presented at the 23rd Biennial Conference of the Concrete Institute of Australia.
Google Scholar
[3]
A. Shayan, A Xu, Utilisation of a non-complying fly ash in blended cement concrete. 24th Biennial Conference of the Concrete Institute of Australia (2009).
Google Scholar
[4]
C. Shi, D. Roy, P. Krivenko, Alkali-Activated Cements and Concretes. Taylor & Francis (2005).
Google Scholar
[5]
Chindaprasirt P, De Silva P, Sagoe-Crentsil K, S H (2012) Effect of SiO2 and Al2O3 on the setting and hardening of high calcium fly ash-based geopolymer systems. Journal of Materials Science 47 (12): 4876-4883.
DOI: 10.1007/s10853-012-6353-y
Google Scholar
[6]
C.K. Yip, The role of calcium in geo-polymerisation. PhD, The University of Melbourne (2004).
Google Scholar
[7]
A. Palomo, M.W. Grutzeck, M.T. Blanco, Alkali-activated fly ashes: A cement for the future. Cement and Concrete Research 29 (8): (1999) 1323-1329.
DOI: 10.1016/s0008-8846(98)00243-9
Google Scholar
[8]
E.I. Diaz, E.N. Allouche, Recycling of fly ash into geopolymer concrete: creation of a database. In: Green Technologies Conference, IEEE, (2010)1-7.
DOI: 10.1109/green.2010.5453790
Google Scholar
[9]
D.D. Dimas, I.P. Giannopoulou, D. Panias, Utilization of alumina red mud for synthesis of inorganic polymeric materials. Mineral Processing and Extractive Metallurgy Review 30 (3): (2009)211-239.
DOI: 10.1080/08827500802498199
Google Scholar
[10]
P. Bankowski, L Zou, R. Hodges, Reduction of metal leaching in brown coal fly ash using geopolymers. Journal of Hazardous Materials 114 (1–3): (2004) 59-67.
DOI: 10.1016/j.jhazmat.2004.06.034
Google Scholar
[11]
D. Law, T. Molyneaux, R. Dirgantara, Properties of brown coal fly ash geopolymer mortars. 4th Biennial National Conference, North Sydney, Australia, (2013).
Google Scholar
[12]
R.A. Fletcher, K.J.D. MacKenzie, C.L. Nicholson, S. Shimada, The composition range of aluminosilicate geopolymers. Journal of the European Ceramic Society 25 (9): (2005) 1471-1477.
DOI: 10.1016/j.jeurceramsoc.2004.06.001
Google Scholar
[13]
P. Duxson, J.L. Provis, Designing precursors for geopolymer cements. Journal of the American Ceramic Society 91 (12): (2008) 3864-3869.
DOI: 10.1111/j.1551-2916.2008.02787.x
Google Scholar
[14]
A. Hajimohammadi, J.L. Provis, J.S.J. Van Deventer, Effect of alumina release rate on the mechanism of geopolymer gel formation. Chemistry of Materials 22 (18): (2010) 5199-5208.
DOI: 10.1021/cm101151n
Google Scholar
[15]
A. Fernández-Jiménez, A. Palomo, I. Sobrados, J. Sanz, The role played by the reactive alumina content in the alkaline activation of fly ashes. Microporous and Mesoporous Materials 91 (1–3): (2006) 111-119.
DOI: 10.1016/j.micromeso.2005.11.015
Google Scholar
[16]
L. Weng, K. Sagoe-Crentsil, T. Brown, S. Song, Effects of aluminates on the formation of geopolymers. Materials Science and Engineering: B 117 (2): (2005) 163-168.
DOI: 10.1016/j.mseb.2004.11.008
Google Scholar