Phase Structure and Piezoelectric Properties of (K0.5Nb0.5)NbO3 - CaZrO3 Ceramics

Article Preview

Abstract:

Lead-free piezoelectric ceramics of (1-x)(K0.5Na0.5)NbO3 - xCaZrO3 (abbreviated as KNN-CZ, x = 0 ~ 0.04) were synthesized by the conventional solid state method. Their phase structures and piezoelectric properties were investigated with x-ray diffraction (XRD), Scanning Electron Microscope (SEM), d33 meter and Impedance Analyzer. KNN-CZ samples exhibit only pure perovskite phases with a small monoclinic distortion. It was observed that the lattice parameter b has a maximum at x = 0.02 but the monoclinic distortion angle β shows a minimum at the same composition. From the dependence of the lattice parameters (a, b, c, β) and cell volume on the content of CZ, it is considered that the intermediate phase transition exists near at x = 0.02. Piezoelectric properties show the maximum value of d33 = 121 pC/N and kp = 0.35 for the sample with x = 0.02, which seems to be due to the co-existence of the two different phases.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

149-153

Citation:

Online since:

June 2014

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Tsur, T. D. Dunbar, and C. A. Randall: J. Electroceram. Vol. 7 (2001), p.25.

Google Scholar

[2] G. V. Lewis, and C. R. A: J. Phys. Chem. Sol. Vol. 47 (1986), p.89.

Google Scholar

[3] R. D. Shannon: Acta Crystallogr. A32 (1976), p.751.

Google Scholar

[4] D. Makovec, Z. Smardzija, and M. Drofenik: J. Am. Ceram. Soc. Vol. 87 (2004), p.1324.

Google Scholar

[5] K. J. Park, C. H. Kim, Y. J. Yoon, S. M. Song, Y. T. Kim, and K. H. Hur: J. Eur. Ceram. Soc. Vol. 29 (2009), p.1735.

Google Scholar

[6] Lee J. K., Hong K. S. and Jang J. W. J. Am. Ceram. Soc. 84, (2006), p. (2001).

Google Scholar

[7] Lu H. Y. and Lin M. H: Ceram. Int. Vol. 31 (2005), p.989.

Google Scholar

[8] J.G. Wu, Y.Y. Wang, D.Q. Xiao, J.G. Zhu, P. Yu, L. Wu, and W.J. Wu: Japanese Journal of Applied Physics 46 (2007), p.7375.

Google Scholar

[9] Y. Guo,K. Kakimoto,H. Ohsato: Applied PhysicsLetters 85 (2004), p.4121.

Google Scholar

[10] R.P. Wang, H. Bando, T. Katsumata, Y. Inaguma, H. Taniguchi, M. Itoh: Physica Status Solidi RRL3 (2009), p.142.

Google Scholar

[11] W. Liang, W. Wu, D. Xiao, J. Zhu: Journal of the American Ceramic Society 94 (2011), p.4317.

Google Scholar

[12] Buessem, W. R. and Kahn, M: J. Am. Ceram. Soc. 54 (1971), p.458.

Google Scholar

[13] Park, Y. and Kim, H. G: Ceram. Int. 23 (1997), p.329.

Google Scholar

[14] Barbara Malic, Janez Bernard, Andreja Bencan, Marija Kosec, Journal of the European Ceramic Society 28 (2008), p.1191.

Google Scholar

[15] Chong Zhanga, Zhong Chena, Wei-jing Ji a, Lei Wanga, Y.B. Chenb, Shu-Hua Yaoa, Shan-Tao Zhanga, Yan-Feng Chena, Journal of Alloys and Compounds 509 (2011), p.2425.

Google Scholar

[16] Tao Huang, Dingquan Xiao, Chao Liu, Fangxu Li, BoWu, Jiagang Wu, JianguoZhu, Ceramics International 40 (2014), p.2731.

Google Scholar