A Novel Model for Predicting the Thermal Conductivity of Fiber Reinforced Ceramic Materials

Article Preview

Abstract:

The prediction of fiber reinforced ceramic is one of the most important procedure when investigating the application of ceramic composite. Numerical simulations were applied and a novel model was brought out in this paper. Firstly, four different models for predicting thermal conductivities of unidirectional fiber reinforced materials were compared, which include the Rayleigh,LN,ST and TE model,. It shows that Rayleigh model and LN model have good precision only in low fiber volume content cases. There existed big differences between the experimental and numerical results if predicted the high fiber volume content with either these four models. Then a novel model based on LN model was studied with the correction of the representative volume element method. Further comparison results indicate that the error can be reduced as 55.6% with this novel model. At the same time, the longitudinal (k11) and transverse (k22) thermal conductivities predicted by the novel model were also analyzed. It was found that k11 had a linear relationship with fiber volume fraction and thermal conductivity ratio (p). But k22 had a nonlinear relationship with fiber volume fraction, which increased much greatly when fiber volume fraction increasing at high fiber volume fraction and p>1.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

154-163

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Liang C.H. Application of fiber reinforced ceramic matrix composite in foreign aviation engine [J]. Aeronautical Manufacturing Technology. 2006, 3: 40~45.

Google Scholar

[2] J.C. Maxwell, A Treatise on Electricity and Magnetism[M], third ed., Dover Publications Inc., New York, reprinted 1954(Chapter 9).

Google Scholar

[3] Da Yu Tzou. A Universal Model for the Overall Thermal Conductivity of Porous Media[J]. Journal of Composite Materials. 1991, 25(8): 1064~1084.

DOI: 10.1177/002199839102500806

Google Scholar

[4] Zhang H.F., Ge X.S. Ye H. Resistance network for predicting the thermal conductivity of composite materials [J]. Journal of Functional Materials. 2005, 36(5): 757~759.

Google Scholar

[5] Nie R.H., Jiao G.B., Wang B. Prediction on coefficient of thermal conductivity for 2D braided C/SiC composites [J]. Acta Materiae Composite Sinica. 2009, 26(3): 169~174.

Google Scholar

[6] Song W.D., Wang J, Liu H.Y., Finite Element Model of Real Structure for Particle Reinforced Composites [J]. Transactions of Beijing Institute of Technology. 2009, 29(6): 501~505.

Google Scholar

[7] Wang J.P., Wang L., Huang W., Thermal Conductivity Coefficient Transformation of Anisotropic Material on the Non-main Direction [J]. Journal of WuHan University of Technology, 1997, 19(1): 109~111.

Google Scholar

[8] G. Springer and S. Tai. Thermal Conductivities of Unidirectional Materials[J]. J. Composite Materials. 1967, Vol. 1: 166~173.

Google Scholar

[9] E. Behrens. Thermal Conductivities of Composite Materials. J. Composite Materials[J]. 1968, Vol. 2(1): 2~17.

Google Scholar

[10] J. Ashton, J. Halpin, and P. Petit. Primer on composite materials: Analysis[M]. Technomic Pub. Co., Stamford, Conn. (1969).

Google Scholar

[11] T. Lewis and L. Nielsen. Dynamic Mechanical Properties of Particulate-Filled Composites[J]. Journal of Applied Polymer Science, 1970, Vol. 17(6): 1449~1471.

DOI: 10.1002/app.1970.070140604

Google Scholar

[12] Mingqing Zou, BoMing Yu, DuanMing Zhang, YongTing MA. Study on optimization of transverse thermal conductivities of unidirectional composites[J]. Journal of heat transfer. 2003, Vol. 125(6): 980~987.

DOI: 10.1115/1.1621892

Google Scholar

[13] Md.R. Islam, A. Pramila. Thermal conductivity of Fiber Reinforced Composites by the FEM[J]. Journal of Composite Materials. 1999, 33(18): 1699~1715.

DOI: 10.1177/002199839903301803

Google Scholar

[14] J. D. Thornburg, C. D. Pears. Prediction of the thermal conductivity of filled and reinforced plastics[J]. ASME Paper 65-WA/HT-4. (1965).

Google Scholar

[15] Jianfeng Wang, James K. Carson, Mike F. North, Donald J. Cleland. A new approach to modeling the effective thermal conductivity of heterogeneous materials[J]. International Journal of Heat and Mass Transfer. 2006, 49(17-18): 3075~3083.

DOI: 10.1016/j.ijheatmasstransfer.2006.02.007

Google Scholar

[16] D. P. H. Hasselman, K.Y. Donaldson, J.R. Thomas Jr. Effective Thermal Conductivity of Uniaxial Composite with Cylindrically Orthotropic Carbon Fibers and Interfacial Thermal Barrier[J]. Journal of Composite Materials. 1993, 27(6): 637~644.

DOI: 10.1177/002199839302700605

Google Scholar

[17] John A. Charles, Dale W. Wilson. A model of passive thermal nondestructive evaluation of composite laminates[J]. Polymer Composites. 1981, 2(3): 105~111.

DOI: 10.1002/pc.750020305

Google Scholar

[18] Cheng G.D., Liu S.T., Prediction of Thermal Conductivity of Unidirectional Fiber Reinforced Composites [J]. ACTA MATERIAE COMPOSITAE SINICA. 1996, 13(1): 78~85.

Google Scholar

[19] Yibin Xu, Koichi Yagi. Automati FEM model generation for evaluating thermal conductivity of composite with random materials arrangement[J]. Computational Materials Science. 2004, 30(3): 242~250.

DOI: 10.1016/j.commatsci.2004.03.011

Google Scholar

[20] R. C. Progelhof, J. L. Throne, R. R. Ruetsch. Methods for predicting the thermal conductivity of composite systems: A review[J]. Polymer Engineering & Science. 1976, Vol. 16(9): 615~625.

DOI: 10.1002/pen.760160905

Google Scholar

[21] M. W. Pilling, B. Yates, M. A. Black. The thermal conductivity of carbon fibre-reinforced composites[J]. Jourmal of Materials Science. 1979, 14(6): 1326~1338.

DOI: 10.1007/bf00549304

Google Scholar

[22] J Koráb, P Štefánik, ŠKavecký. Thermal conductivity of unidirectional copper matrix carbon fiber composites[J]. Composites Part A: Applied Science and Manufacturing. 2002, 33(4): 577~581.

DOI: 10.1016/s1359-835x(02)00003-9

Google Scholar

[23] A. Bensoussan, J. L. Lions, G. Papanicolou. Asymtotic Analysis of Periodic Structures[M]. North-Holland. Amsterdan, (1978).

Google Scholar

[24] A. Pramila. Thermal Conductivity of Fiber Reinforced Composites by the FEM[J]. Journal of Composite Materials. 1999, 33(18): 1699~1715.

DOI: 10.1177/002199839903301803

Google Scholar

[25] Cheng W., Zhao S.G., Liu Z.G., Thermal Property of 3DBraided Fiber Composites: Experimental and Numerical Results [J]. Acta Aeronautica Et Astronautica Sinica,2002, 23(2): 102~105.

Google Scholar

[26] He F., Carbon fiber and Graphite fiber[M]. Beijing:Chemical Industry Press, 2010. 7.

Google Scholar

[27] Hugh O. Pierson, David A. Northrop. Carbon-Felt, Cabon-Matrix Composites: Dependence of Thermal and Mechanical Properties on Fiber Precursor and Matrix Structure[J], Journal of Composite Materials, 1975, 9: 118: 137.

DOI: 10.1177/002199837500900203

Google Scholar

[28] Wu Q. R, Wen B.X., Studies on Temperature Dependence of Thermal Conductivity and Linear Expansion for SiC Material [J]. JOURNAL OF SOUTH CHINA UNIVERSITY OF TECHNOLOGY, 1996, 24(3): 11~15.

Google Scholar

[29] Pilling, M.W., Yates, B., Black, M.A.: The thermal conductivity of carbon fiber-reinforced composites. J. Mater. Sci. 14, 1326–1338 (1979).

DOI: 10.1007/bf00549304

Google Scholar

[30] Xia, Z. Z., and Guo, Z. Y., 2001, Simulations on Optimization of Thermal Conduction by Life Evolvement Processes, Advances on Natural Science, 11, p.845– 852.

Google Scholar

[31] Shih-Yuan Lu, The effective thermal conductivities of composites with 2-D arrays of circular and square cylinders, Journal of composite materials, March 1995 vol. 29 no. 4: 483-506.

DOI: 10.1177/002199839502900404

Google Scholar

[32] J.W. Klett, V.J. Ervin, D.D. Edie, Finite-element modeling of heat transfer in carbon/carbon composites, Composites Science and Technology, March 1999, vol. 59, Issue 4: 593-607.

DOI: 10.1016/s0266-3538(98)00099-2

Google Scholar

[33] Chung, P.W., Tamma, K.K., Namburu, R.R.: Homogenization of temperature-dependent thermal conductivity in composite materials. J. Thermophys. Heat Transf. 2001 vol. 15 no. 1, 10-17.

DOI: 10.2514/2.6590

Google Scholar

[34] Rodrigo P. A. Rocha and Manuel E. Cruz. Computation of the effective conductivity of unidirectional fibrous composites with an interfacial thermal resistance. International Journal of Computation and Methodology, 2001, vol. 39, Issue 2: 179-203.

DOI: 10.1080/104077801300004267

Google Scholar

[35] L.M. Manocha, Ashish Warrier, S. Manocha, D. Sathiyamoorthy, et al. Thermophysical properties of densified pitch based carbon/carbon materials—I. Unidirectional composites. Carbon, Volume 44, Issue 3, March 2006, Pages 480–487.

DOI: 10.1016/j.carbon.2005.08.012

Google Scholar