[1]
D.N. Wang, Y.Q. Guo, K.M. Liang, K. Tao, crystal structure of zirconia by Rietveld refinement, Science in China, 42 (1999) 80-86.
DOI: 10.1007/bf02872053
Google Scholar
[2]
J.P. Singh, Narottam P. Bansal, Takashi Goto, Jacques Lamon, Sung R. Choi, Morsi M. Mahmoud, Guido Link, Processing and Properties of Advanced Ceramics and composites IV, John Wiley & Sons, Inc., Hoboken, New Jersey, 2012, pp.175-181.
DOI: 10.1002/9781118491867
Google Scholar
[3]
Diletta Sciti, Laura Pienti, Daniele Dalle Fabbriche, Stefano Guicciardi, Laura Silvestroni, Combined effect of SiC chopped fibers and SiC whiskers on the toughening of ZrB2, Ceram. Int. 40 (2014) 4819-4826.
DOI: 10.1016/j.ceramint.2013.09.031
Google Scholar
[4]
T. Zhu, L. Xu, X. Zhang, W. Han, et al, Densification microstructure and mechanical properties of ZrB2-SiC ceramic composites, J. Eur. Ceram. Soc. 29 (2009) 2893–2901.
DOI: 10.1016/j.jeurceramsoc.2009.03.008
Google Scholar
[5]
C.H. Wang, M.C. Wang, J.K. Du, Y.Y. Sie, C.S. Hsi, H. Er Lee, Phase transformation and nanocrystallite growth behavior of 2 mol% yttria-partially stabilized zirconia (2Y-PSZ) powders, Ceram. Int., 39 (2013) 5165–5174.
DOI: 10.1016/j.ceramint.2012.12.013
Google Scholar
[6]
J. OuYang, X.Y. Li, J. Jin, Y. Zhang, H.M. Ynag, Research Progress in the Structural,Mechanical Properties of ZrO2 and Their Applications, Materials Review (A), 27 (2013) 13-18.
Google Scholar
[7]
H. Yan, M.M. Dou, H.P. Li, Transformation toughening mechanisms and application of ZrO2 ceramics, J. Ceram., 21 (2000) 46-50.
Google Scholar
[8]
Y.W. Hsu, K.H. Yang, K.M. Chang, Synthesis and crystallization behavior of 3 mol% yttria stabilized tetragonal zirconia polycrystals (3Y-TZP) nanosized powders prepared using a simple co-precipitation process, J Alloys Compd, 509 (2011) 6864–6870.
DOI: 10.1016/j.jallcom.2011.03.162
Google Scholar
[9]
Q. Mahmood, A. Afzal, H.M. Siddiqi, A. Habib, Sol-gel synthesis of tetragonal ZrO2 nanoparticles stabilized by crystallite size and oxygen vacancies, J. Sol-Gel Sci. Technol.; 67 (2013) 670-674.
DOI: 10.1007/s10971-013-3112-8
Google Scholar
[10]
I.G. Tredici, F. Maglia, M. Dapiaggi et al, Synthesis of bulk tetragonal zirconia without stabilizer: the role of precursor nanopowders, J. Eur. Ceram., 32 (2012) 343–352.
DOI: 10.1016/j.jeurceramsoc.2011.09.022
Google Scholar
[11]
O. Vasylkiv, Y. Sakka, Synthesis and colloidal processing of zirconia nanopowder, J. Am. Ceram. Soc., 84 (2001) 2489–2494.
DOI: 10.1111/j.1151-2916.2001.tb01041.x
Google Scholar
[12]
X. Li, Y. Shimizu, A. Pyatenko et al, Tetragonal zirconia spheres fabricated by carbon-assisted selective laser heating in a liquid medium, Nanotechnology, 23 (2012) 115602-115614.
DOI: 10.1088/0957-4484/23/11/115602
Google Scholar
[13]
J.C. Heather W.J. Seong, J.P. Igor, Current ceramic materials and systems with clinical recommendations: A systematic review, J. Pros. Dent., 98 (2007) 389–404.
Google Scholar
[14]
P.F. Manicone, P.R. Iommetti, L. Raffaelli, An overview of zirconia ceramics: Basic properties and clinical applications, J. Dent., 35 (2007) 819–826.
DOI: 10.1016/j.jdent.2007.07.008
Google Scholar
[15]
A.H. Heuer; Transformation toughening in ZrO2-containing ceramics;J. Am. Ceram. Soc., 70 (1987) 689–698.
Google Scholar
[16]
R.A. Young, Introduction to the Rietveld method In, The Rietveld Method, Oxford University Press, Oxford, (1995).
Google Scholar
[17]
D.B. Wiles, and R.A. Young, A new computer program for Rietveld analysis of X-ray powder diffraction patterns, J. Appl. Cryst., 14 (1981) 149-151.
DOI: 10.1107/s0021889881008996
Google Scholar
[18]
G. Anné,S. Put, V. Kim, D.T. Jiang, J. Vleugels, O.V. Biest, Hard, Tough and Strong ZrO2-WC Composites from Nanosized Powders, J. Eur. Ceram. Soc., 25 (2005) 55–63.
DOI: 10.1016/j.jeurceramsoc.2004.01.015
Google Scholar