[1]
S. Veprek, V. Marecek. Preparation of thin layers of Ge and Si by chemical hydrogen plasma transport. Solid State Electronics 11 (1968) 683- 687.
DOI: 10.1016/0038-1101(68)90071-3
Google Scholar
[2]
A.V. Shah, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, U. Graf. Material and solar cell research in microcrystalline silicon. Solar Energy Materials and Solar cells 78 (2003) 469-491.
DOI: 10.1016/s0927-0248(02)00448-8
Google Scholar
[3]
B. Yan, G. Yue, J. Yang, S. Guha, D. Williamson, D. Han, C. Jiang. Hydrogen dilution profiling for hydrogenated microcrystalline silicon solar cells. Appl. Phys. Lett. 85 (2004) 1955-(1957).
DOI: 10.1063/1.1788877
Google Scholar
[4]
M. Kondo, M. Fukawa, L. Guo, A. Matsuda. High rate growth of microcrystalline silicon at low temperatures. J. Non-Cryst. Solids 266 (2000) 84-89.
DOI: 10.1016/s0022-3093(99)00744-9
Google Scholar
[5]
A. Matsuda, Formation kinetics and control of microcrystalline in mu-Si-H from glow discharge plasma. J. Non-Cryst. Solids 59-6 (1983) 767-774.
DOI: 10.1016/0022-3093(83)90284-3
Google Scholar
[6]
K. Nakamura, K. Yoshida, S. Takeoka, I. Shimizu. Roles of atomic hydrogen in chemical annealing. Jpn. J. Appl. Phys. 34 (1995) 442-449.
DOI: 10.1143/jjap.34.442
Google Scholar
[7]
C. C. Tsai, G. B. Anderson, R. Thompson, B. Wacker. Control of silicon networks structure in plasma deposition. J. Non-Cryst. Solids 114 (1989) 151-153.
DOI: 10.1016/0022-3093(89)90096-3
Google Scholar
[8]
Y. P. Chou, S. C. Lee. Structural, optical, and electrical properties of hydrogenated amorphous silicon germanium alloys. J. Appl. Phys. 83 (1998) 4111-4123.
DOI: 10.1063/1.367229
Google Scholar
[9]
A. Matsuda, Growth mechanism of microcrystalline silicon obtained from reactive plasmas. Thin Solid Films 337 (1999) 1-6.
DOI: 10.1016/s0040-6090(98)01165-1
Google Scholar
[10]
M. Jana, D. Das, A. K. Barua. Promotion of microcrystallization by argon in moderately hydrogen diluted silane plasma. Solar Energy Materials and Solar Cells 74 (2002) 407-413.
DOI: 10.1016/s0927-0248(02)00121-6
Google Scholar
[11]
T. Kaneko, K. Onisawa, M. Wakag, Y. Kita, T. Minemura. Crystalline fraction of microcrystalline silicon films prepared by plasma enhanced chemical vapor deposition using pulsed silane flow. Jpn. J. Appl. Phys. 32 (1993) 4907-4911.
DOI: 10.1143/jjap.32.4907
Google Scholar
[12]
K. Tanaka, A. Matsuda. Glow-discharge amorphous silicon: growth process and structure. Materials Science Reports 2 (1987) 139-184.
DOI: 10.1016/s0920-2307(87)80003-8
Google Scholar
[13]
Bratu P, Kompa K L, Hofer U, Optical second harmonic investigations of H-2 and D-2 adsorption on Si(100)2×1: The surface temperature dependence of the sticking coefficient. Chemical Physics Letters 251 (1996) 1-7.
DOI: 10.1016/0009-2614(96)00085-1
Google Scholar
[14]
J. Zhou, K. Ikuta, T. Yasuda, T. Umeda, S. Yamasaki, K. Tanaka. Growth of amorphous layer free microcrystalline silicon on insulating glass substrates by plasma enhanced chemical vapor deposition. Appl. Phys. Lett. 71 (1997) 1534-1536.
DOI: 10.1063/1.119958
Google Scholar
[15]
O. Vetterl, M. Hulsbek, J. Wolff, R. Carius, E. Finger. Preparation of microcrystalline silicon seed layers with defined structural properties. Thin Solid Films 427 (2003) 46-50.
DOI: 10.1016/s0040-6090(02)01237-3
Google Scholar
[16]
J. E. Gerbi, J. R. Abelson. Deposition of microcrystalline silicon: Derect evidence for hydrogen-induced surface mobility of Si adspecies. J. Appl. Phys. 89 (2001) 1463-1469.
DOI: 10.1063/1.1334639
Google Scholar