Effect of Hydrogen Dilution Ratio and Substrate Roughness on the Microstructure of Intrinsic Microcrystalline Silicon Thin Films

Article Preview

Abstract:

Intrinsic microcrystalline silicon (μc-Si:H) thin films were deposited on four kinds of substrates (polished quartz glass: PG, Rough quartz glass: RG, Textured SnO2:F coated glass: TG, Textured ZnO:Al coated glass: ZG) by 13.56 MHz plasma enhanced chemical vapor deposition (PECVD) with different hydrogen dilution ratio (RH=H2/SiH4) under the pressure of 2 Torr. The film thickness, crystalline volume fraction (XC) and substrate surface roughness (Ra) were measured by surface profilometer, Raman spectra and atom force microscopy (AFM), respectively. The results revealed that with the increase of RH, the deposition rate decreased and XC increased monotonously for the films deposited on the same substrate, but the substrate Ra had an obvious impact on the film microstructure. A physical model was proposed to illustrate the growth of the μc-Si:H thin films deposited on substrates with different Ra.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

202-206

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Veprek, V. Marecek. Preparation of thin layers of Ge and Si by chemical hydrogen plasma transport. Solid State Electronics 11 (1968) 683- 687.

DOI: 10.1016/0038-1101(68)90071-3

Google Scholar

[2] A.V. Shah, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, U. Graf. Material and solar cell research in microcrystalline silicon. Solar Energy Materials and Solar cells 78 (2003) 469-491.

DOI: 10.1016/s0927-0248(02)00448-8

Google Scholar

[3] B. Yan, G. Yue, J. Yang, S. Guha, D. Williamson, D. Han, C. Jiang. Hydrogen dilution profiling for hydrogenated microcrystalline silicon solar cells. Appl. Phys. Lett. 85 (2004) 1955-(1957).

DOI: 10.1063/1.1788877

Google Scholar

[4] M. Kondo, M. Fukawa, L. Guo, A. Matsuda. High rate growth of microcrystalline silicon at low temperatures. J. Non-Cryst. Solids 266 (2000) 84-89.

DOI: 10.1016/s0022-3093(99)00744-9

Google Scholar

[5] A. Matsuda, Formation kinetics and control of microcrystalline in mu-Si-H from glow discharge plasma. J. Non-Cryst. Solids 59-6 (1983) 767-774.

DOI: 10.1016/0022-3093(83)90284-3

Google Scholar

[6] K. Nakamura, K. Yoshida, S. Takeoka, I. Shimizu. Roles of atomic hydrogen in chemical annealing. Jpn. J. Appl. Phys. 34 (1995) 442-449.

DOI: 10.1143/jjap.34.442

Google Scholar

[7] C. C. Tsai, G. B. Anderson, R. Thompson, B. Wacker. Control of silicon networks structure in plasma deposition. J. Non-Cryst. Solids 114 (1989) 151-153.

DOI: 10.1016/0022-3093(89)90096-3

Google Scholar

[8] Y. P. Chou, S. C. Lee. Structural, optical, and electrical properties of hydrogenated amorphous silicon germanium alloys. J. Appl. Phys. 83 (1998) 4111-4123.

DOI: 10.1063/1.367229

Google Scholar

[9] A. Matsuda, Growth mechanism of microcrystalline silicon obtained from reactive plasmas. Thin Solid Films 337 (1999) 1-6.

DOI: 10.1016/s0040-6090(98)01165-1

Google Scholar

[10] M. Jana, D. Das, A. K. Barua. Promotion of microcrystallization by argon in moderately hydrogen diluted silane plasma. Solar Energy Materials and Solar Cells 74 (2002) 407-413.

DOI: 10.1016/s0927-0248(02)00121-6

Google Scholar

[11] T. Kaneko, K. Onisawa, M. Wakag, Y. Kita, T. Minemura. Crystalline fraction of microcrystalline silicon films prepared by plasma enhanced chemical vapor deposition using pulsed silane flow. Jpn. J. Appl. Phys. 32 (1993) 4907-4911.

DOI: 10.1143/jjap.32.4907

Google Scholar

[12] K. Tanaka, A. Matsuda. Glow-discharge amorphous silicon: growth process and structure. Materials Science Reports 2 (1987) 139-184.

DOI: 10.1016/s0920-2307(87)80003-8

Google Scholar

[13] Bratu P, Kompa K L, Hofer U, Optical second harmonic investigations of H-2 and D-2 adsorption on Si(100)2×1: The surface temperature dependence of the sticking coefficient. Chemical Physics Letters 251 (1996) 1-7.

DOI: 10.1016/0009-2614(96)00085-1

Google Scholar

[14] J. Zhou, K. Ikuta, T. Yasuda, T. Umeda, S. Yamasaki, K. Tanaka. Growth of amorphous layer free microcrystalline silicon on insulating glass substrates by plasma enhanced chemical vapor deposition. Appl. Phys. Lett. 71 (1997) 1534-1536.

DOI: 10.1063/1.119958

Google Scholar

[15] O. Vetterl, M. Hulsbek, J. Wolff, R. Carius, E. Finger. Preparation of microcrystalline silicon seed layers with defined structural properties. Thin Solid Films 427 (2003) 46-50.

DOI: 10.1016/s0040-6090(02)01237-3

Google Scholar

[16] J. E. Gerbi, J. R. Abelson. Deposition of microcrystalline silicon: Derect evidence for hydrogen-induced surface mobility of Si adspecies. J. Appl. Phys. 89 (2001) 1463-1469.

DOI: 10.1063/1.1334639

Google Scholar