Preparation and Properties of Two-Dimensional Braid Heterogeneous-Reinforced Polyvinylidene Fluoride Hollow Fiber Membrane

Article Preview

Abstract:

The two-dimensional braid heterogeneous-reinforced (BHR) polyvinylidene fluoride (PVDF) hollow fiber membranes which include PVDF polymer solutions (coating layer) and the two-dimensional braid as a reinforcement were prepared through the dry-wet spinning process. The influence of PVDF concentration in polymer solutions on performance of BHR hollow fiber membranes were investigated by terms of pure water flux, protein rejection, a mechanical strength test, and morphology observations by a scanning electron microscope (SEM). The results of this study indicated that the tensile strength of the BHR PVDF hollow fiber membranes was nearly 75 MPa and the hollow fiber membranes were endowed with better flexibility performance. The BHR PVDF hollow fiber membranes had a favorable interfacial bonding between the coating layer and the two-dimensional braid. The pure water flux decreased, while the rejection ratio increased with the increase of polymer concentration.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

218-225

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E. Yuliwati, A.F. Ismail, T. Matsuura, M.A. Kassim, M.S. Abdullah, Effect of modified PVDF hollow fiber submerged ultrafiltration membrane for refinery wastewater treatment, Desalination. 283 (2011) 214–220.

DOI: 10.1016/j.desal.2011.03.049

Google Scholar

[2] S.I. Patsios, A.J. Karabelas, An investigation of the long-term filtration performance of a membrane bioreactor (MBR): the role of specific organic fractions, J. Membrane Sci. 372 (2011) 102–115.

DOI: 10.1016/j.memsci.2011.01.055

Google Scholar

[3] M.J. Kim, B. Sankararao, C.K. Yoo, Determination of MBR fouling and chemical cleaning interval using statistical methods applied on dynamic index data, J. Membrane Sci. 375 (2011) 345–353.

DOI: 10.1016/j.memsci.2011.04.001

Google Scholar

[4] K. Murase, H. Habara, H. Fujiki, T. Hirane, M. Mizuta, U.S. Patent 2002/0046970A1, (2002).

Google Scholar

[5] J. Liu, P. Li, Y. Li, L. Xie, S. Wang, Z. Wang, Preparation of PET threads reinforced PVDF hollow fiber membrane, Desalination. 249 (2009) 453–457.

DOI: 10.1016/j.desal.2008.11.010

Google Scholar

[6] F. Liu, N. A. Hashim, Y. Liu, M.R.M. Abed, K. Li, Progress in the production and modification of PVDF membranes, J. Membrane Sci. 375 (2011) 1–27.

DOI: 10.1016/j.memsci.2011.03.014

Google Scholar

[7] X.C. Cao, J. Ma, X.H. Shi, Z.J. Ren, Effect of TiO2 nanoparticle size on the performance of PVDF membrane, Appl. Surf. Sci. 253 (2006) 2003–(2010).

Google Scholar

[8] Q. Li, Z. -L. Xu, L. -Y. Yu, Effects of mixed solvents and PVDF types on performances of PVDF microporous membranes, J. Appl. Polym. Sci. 115 (2010) 2277–2287.

DOI: 10.1002/app.31324

Google Scholar

[9] P. Sukitpaneenit, T. -S. Chung, Molecular elucidation of morphology and mechanical properties of PVDF hollow fiber membranes from aspects of phase inversion, crystallization and theology, J. Membrane Sci. 340 (2009) 192–205.

DOI: 10.1016/j.memsci.2009.05.029

Google Scholar

[10] M. -C. Yang, T. -Y. Liu, The permeation performance of polyacrylonitrile/bpolyvinylidine fluoride blend membranes, J. Membrane Sci. 226 (2003) 119–130.

DOI: 10.1016/j.memsci.2003.08.013

Google Scholar

[11] N. Li, C. Xiao, S. An, X. Hu, Preparation and properties of PVDF/PVA hollow fiber membranes, Desalination. 250 (2010) 530–537.

DOI: 10.1016/j.desal.2008.10.027

Google Scholar

[12] M. Amirilargani, T. Mohammadi, Preparation and characterization of asymmetric polyethersulfone (PES) membranes, Polym. Advan. Technol. 20 (2009) 993–998.

DOI: 10.1002/pat.1353

Google Scholar