TURBISCAN: History, Development, Application to Colloids and Dispersions

Article Preview

Abstract:

Turbiscan is a new rapid and nondestructive method that has found increasing use in detecting physical destabilisation of concentrated and liquid dispersions. This review introduces the history and development of Tubiscan and focuses on applications of Turbiscan. The applications of Tubican were wildly used in dispersion stability of drug, carbon nanotubes dispersion, alumina suspension, emulsion stabilization and sedimentation behavior studying.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1592-1596

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] O. Mengual, G. Meunier, I. Cayre, K. Puech and P. Snabre, Characterisation of instability of concentrated dispersions by a new optical analyser: the TURBISCAN MA 1000, Colloids and Surfaces A: Physicochemical and Engineering Aspects 152 (1999).

DOI: 10.1016/s0927-7757(98)00680-3

Google Scholar

[2] C. Celia, E. Trapasso, D. Cosco, D. Paolino and M. Fresta, Turbiscan Lab® Expert analysis of the stability of ethosomes® and ultradeformable liposomes containing a bilayer fluidizing agent, Colloids and Surfaces B: Biointerfaces 72 (2009), 155-60.

DOI: 10.1016/j.colsurfb.2009.03.007

Google Scholar

[3] M. Gr., Le TURBISCAN: un nouvel instrument de mesure de phe´nome`nes naissants de de´mixtion dans lese´mulsions et les suspensions (1994), pp.53-8.

Google Scholar

[4] O. Mengual, G. Meunier, I. Cayré, K. Puech and P. Snabre, TURBISCAN MA 2000: multiple light scattering measurement for concentrated emulsion and suspension instability analysis, Talanta 50 (1999), 445-56.

DOI: 10.1016/s0039-9140(99)00129-0

Google Scholar

[5] S. Daoud-Mahammed, P. Couvreur and R. Gref, Novel self-assembling nanogels: Stability and lyophilisation studies, Int J Pharm 332 (2007), 185-91.

DOI: 10.1016/j.ijpharm.2006.09.052

Google Scholar

[6] Q. Zhang, Y. Chen, W. J. Fu and S. Y. Sun. Study on the stability of pesticide WDG suspension by TURBISCAN LAB. 2008. 28, 4. 843-846.

Google Scholar

[7] H. Terayama, K. Okumura, K. Sakai, K. Torigoe and K. Esumi, Aqueous dispersion behavior of drug particles by addition of surfactant and polymer, Colloids and Surfaces B: Biointerfaces 20 (2001), 73-7.

DOI: 10.1016/s0927-7765(00)00156-9

Google Scholar

[8] H. Kim, W. Park, M. Kang and H. Jin, Multiple light scattering measurement and stability analysis of aqueous carbon nanotube dispersions, J Phys Chem Solids 69 (2008), 1209-12.

DOI: 10.1016/j.jpcs.2007.10.062

Google Scholar

[9] Y. Kim, S. Kwon, D. Kim, H. Kim and H. Jin, Dispersity and stability measurements of functionalized multiwalled carbon nanotubes in organic solvents, Current Applied Physics 9 (2009), e100-3.

DOI: 10.1016/j.cap.2008.12.039

Google Scholar

[10] S. Hong, M. Kim, C. K. Hong, D. Jung and S. E. Shim, Encapsulation of multi-walled carbon nanotubes by poly(4-vinylpyridine) and its dispersion stability in various solvent media, Synthetic Met 158 (2008), 900-7.

DOI: 10.1016/j.synthmet.2008.06.023

Google Scholar

[11] M. Wiśniewska, Influences of polyacrylic acid adsorption and temperature on the alumina suspension stability, Powder Technol 198 (2010), 258-66.

DOI: 10.1016/j.powtec.2009.11.016

Google Scholar

[12] M. Wiśniewska, S. Chibowski and T. Urban, Investigation of the stability of an alumina suspension in the presence of ionic polyacrylamide, Thin Solid Films 520 (2012), 6158-64.

DOI: 10.1016/j.tsf.2012.05.034

Google Scholar

[13] M. Wiśniewska, K. Terpiłowski, S. Chibowski, T. Urban, V. I. Zarko and V. M. Gun'Ko, Effect of polyacrylic acid (PAA) adsorption on stability of mixed alumina‐silica oxide suspension, Powder Technol 233 (2013), 190-200.

DOI: 10.1016/j.powtec.2012.08.037

Google Scholar

[14] M. Balastre, J. F. Argillier, C. Allain and A. Foissy, Role of polyelectrolyte dispersant in the settling behaviour of barium sulphate suspension, Colloids and Surfaces A: Physicochemical and Engineering Aspects 211 (2002), 145-56.

DOI: 10.1016/s0927-7757(02)00240-6

Google Scholar

[15] N. Azema, Sedimentation behaviour study by three optical methods — granulometric and electrophoresis measurements, dispersion optical analyser, Powder Technol 165 (2006), 133-9.

DOI: 10.1016/j.powtec.2005.10.015

Google Scholar

[16] R. Vie, N. Azema, J. C. Quantin, E. Touraud and M. Fouletier, Study of suspension settling: A approach to determine suspension classification and particle interactions, Colloids and Surfaces A: Physicochemical and Engineering Aspects 298 (2007).

DOI: 10.1016/j.colsurfa.2006.10.074

Google Scholar

[17] J. Bongono, N. Azema, A. Johannet and P. Gaudon, Determination of the characteristics of agglomerates in aqueous suspensions using nonlinear optimization, Powder Technol 208 (2011), 271-8.

DOI: 10.1016/j.powtec.2010.08.016

Google Scholar

[18] C. Lemarchand, P. Couvreur, C. Vauthier, D. Costantini and R. Gref, Study of emulsion stabilization by graft copolymers using the optical analyzer Turbiscan, Int J Pharm 254 (2003), 77-82.

DOI: 10.1016/s0378-5173(02)00687-7

Google Scholar

[19] I. Roland, G. Piel, L. Delattre and B. Evrard, Systematic characterization of oil-in-water emulsions for formulation design, Int J Pharm 263 (2003), 85-94.

Google Scholar

[20] L. Day, M. Xu, P. Hoobin, I. Burgar and M. A. Augustin, Characterisation of fish oil emulsions stabilised by sodium caseinate, Food Chem 105 (2007), 469-79.

DOI: 10.1016/j.foodchem.2007.04.013

Google Scholar