Characterization of Different Nanostructured Bone Substitute Biomaterials

Article Preview

Abstract:

The present research paper centers on physicochemical characterization of six nanostructured alloplastic bone substitutes developed at Santa Catarina State University (UDESC Brazil). In addition to identifying the main phases, the focus was to measure the morphological and microstructural features, which are believed to be crucial for controlling and guiding biological and molecular events. The studied samples exhibited rounded granules measuring 200μm 10(PO4)6(OH)2] was found as main phase for HAp, BCP and HAp/Al2O3 biomaterials. For HAp/TiO2n, HAp/SiO2n and β-TCP, the major phase was beta tricalcium phosphate [Ca3(PO4)2-β]. The results demonstrate that the presence of a second phase of nanometer order, at a hydroxyapatite bioceramic matrix, may modify the surface diffusion of the grains and the phase transformation kinetics of hydroxyapatite and beta tricalcium phosphate at temperatures up to 1100°C.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

695-700

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L. Zhang, T.J. Webster. Nanotechnology and nanomaterials: Promises for improved tissue regeneration. Nano Today, 4 (2009) 66-80.

DOI: 10.1016/j.nantod.2008.10.014

Google Scholar

[2] R.Z. Legeros, G. Daculsi, J.P. Legeros. Bioactive Bioceramics. In W.S. Pietrzak. Musculo-skeletal tissue regeneration: biological materials and methods, Humana Press, Totowa, (2008).

DOI: 10.1007/978-1-59745-239-7_8

Google Scholar

[3] H. Yuan, K. Kurashina, J. D. de Bruijn, Y. Li, K. de Groot, X. Zhang. A preliminary study on osteoinduction of two kinds of calcium phosphate ceramics. Biomaterials, (20) 1999 1799-1806.

DOI: 10.1016/s0142-9612(99)00075-7

Google Scholar

[4] D. Le Nihouannen, G. Daculsi, A. Saffarzadeh, O. Gauthier, S. Delplace, P. Pileta, P. Layrolle. Ectopic bone formation by microporous calcium phosphate ceramic particles in sheep muscles. Bone 36 (2005) 1086-1093.

DOI: 10.1016/j.bone.2005.02.017

Google Scholar

[5] K. A Hing, B. Annaz, S. Saeed, P.A. Revell, T. Buckland. Microporosity enhances bioactivity of synthetic bone graft substitutes. Journal of Materials Science: Materials in Medicine, 16 (2005) 467– 475.

DOI: 10.1007/s10856-005-6988-1

Google Scholar

[6] L. Richert, F. Variola, F. Rosei, J. D. Wuestd, A. Nanci. Adsorption of proteins on nanoporous Ti surfaces. Surface Science 604 (2010) 1445–1451.

DOI: 10.1016/j.susc.2010.05.007

Google Scholar

[7] Z. Evis, M. Sato, T. J. Webster. Increased osteoblast adhesion on nanograined hydroxyapatite and partially stabilized zirconia composites. J Biomed Mater Res A, 78 (2006) 500-507.

DOI: 10.1002/jbm.a.30750

Google Scholar

[8] J.W. Park, E.S. Kim, J.H. Jang, J.Y. Suh, K.B. Park, T. Hanawa. Healing of rabbit calvarial bone defects using biphasic calcium phosphate ceramics made of submicron-sized grains with a hierarchical pore structure. Clin. Oral. Implants Res. 21 (2010).

DOI: 10.1111/j.1600-0501.2009.01846.x

Google Scholar

[9] N. Kivrak, A. C. Tas. Synthesis of Calcium Hydroxyapatite–Tricalcium Phosphate (HA–TCP) Composite Bioceramic Powders and Their Sintering Behavior. J. Am. Ceram. Soc., 81 (1998) 2245–52.

DOI: 10.1111/j.1151-2916.1998.tb02618.x

Google Scholar

[10] S. Raynaud, E. Champion, D. Bernache-Assollant. Calcium phosphate apatites with variable Ca/P atomic ratio II. Calcination and sintering. Biomaterials 23 (2002) 1073-1080.

DOI: 10.1016/s0142-9612(01)00219-8

Google Scholar

[11] J Peña, M. Vallet-Regi. Hydroxyapatite, tricalcium phosphate and biphasic materials prepared by a liquid mix technique. Journal of the European Ceramic Society, 23 (2003) 1687-1696.

DOI: 10.1016/s0955-2219(02)00369-2

Google Scholar

[12] P. Layrolle, G. Daculsi. Physicochemistry of Apatite and Its Related Calcium Phosphates. In: B. León, J.A. Jansen. Thin calcium phosphate coatings for medical implants. Springer, New York, (2009).

DOI: 10.1007/978-0-387-77718-4_2

Google Scholar