Characterization of Three Calcium Phosphate Microporous Granulated Bioceramics

Article Preview

Abstract:

The calcium phosphate microporous bioceramics, and hydroxyapatite (HA) and β-tricalcium phosphate (β-TCP) biphasic compositions, in the granular form of microporous biomaterials, are research themes and present potential biomedical applications in rebuilding and repairing maxillofacial bone and tooth structure and in orthopedic applications. This is associated with microstructural characteristics of biocompatibility and bioactivity and osteoconductivity properties that these biomaterials offer when applied in vivo or in simulated environment. Another differential point of these biomaterials is the solubilization capacity that they present when applied in the biological environment. These compositions of calcium phosphates (hydroxyapatite matrix and/or β-tricalcium phosphate) allow for the gradual release of calcium and phosphate ions for the biological environment, which are absorbed and promote the formation of new bone tissue. These materials are also promising in applications in the field of traumatology as in the repair of traumatized bone tissue and drugs controlled release and bone structure treatments. The favorable results of these biomaterials as bone reconstruction matrix and drugs controlled release are associated with crystallographic characteristics, morphology, surface and solubility that these biomaterials present when in contact with body fluids. This work aimed to describe three types of calcium phosphate microporous granulated biomaterials. The biomaterials used were provided by the Biomaterials Group from Universidade do Estado de Santa Catarina - UDESC and are: hydroxyapatite, β-tricalcium phosphate and biphasic composition 60% hydroxyapatite/40% β-tricalcium phosphate. The Scanning Electron Microscopy technique (SEM) was used for carrying out the morphological characterization and microstructure studies of granulated biomaterials. The X-Ray Diffractometry (XRD) served for characterization of crystalline phases. Arthur Method was used for determining open porosity and hydrostatic density of biomaterials. The BET technique served to support determination of the surface area of microporous granulated biomaterials. The results are encouraging and show that these biomaterials present promising morphological characteristics and microporous microstructure as wettability and capillarity. These characteristics may contribute to biomaterial osteointegration by new tissue, bone formation and mineralization process.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

687-694

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Camargo, N. H. A. ; Lima, Sarah Amin de ; Souza, J. C. P. ; Aguiar, Juliana Francine de ; Gemelli, Enori ; Meier, M. M. ; Cardoso ; Mittelstädt . Synthesis and Characterization of Nanostructured Ceramic Powders of Calcium Phosphate and Hydroxyapatite for Dental Applications. Key Engineering Materials, v. 398, (2009).

DOI: 10.4028/www.scientific.net/kem.396-398.619

Google Scholar

[2] Huipin Yuan, Kenji Kurashia, Joost D. de Bruijn, Yubao Li, K. de Groot, Xingdong Zhang; A preliminary study on osteoinduction of two kinds calcium phosphate ceramics. Biomaterials nº 20, (1999), pp.1799-1806.

DOI: 10.1016/s0142-9612(99)00075-7

Google Scholar

[3] Oliver Gathier, Jean-Michel Bouler, Eric Aguado, Paul Pilet Guy Daculsi; Macroporous biphasic calcium phosphate ceramics: Influence of macropore diameter and macroporosity percentage on bone ingrowth. Biomaterials nº 19, (1998), pp.133-139.

DOI: 10.1016/s0142-9612(97)00180-4

Google Scholar

[4] K. Kurashina, H. Kurita, Q. Wu, A. Ohtsuka, H. Kobayashi; Ectopic osteogenesis with biphasic ceramics of hydroxyapatite and tricalcium phosphate in rabbits. Biomaterials, nº 23, (2002), pp.407-412.

DOI: 10.1016/s0142-9612(01)00119-3

Google Scholar

[5] Shahram Ghanaati, Mike Barbeck, Carina Orth, Ines Willershausen, Benjamin W. Thimm, Christane Hoffmann, Angela Rasic, Robert A. Sader, Ronald E. Unger, Fabian Peters, C. James Kirkpatrick Influence of b-tricalcium phosphate granule size and morphology on tissue reaction in vivo. Acta Biomaterialia, nº 6, (2010).

DOI: 10.1016/j.actbio.2010.07.006

Google Scholar

[6] T. L. Livingston, S. Gordon, M. Archambault, S. Kadiyala, K. Mcintosh, A. Smith, S. J. Peter; Mesenchymal stem cells combined with biphasic calcium phosphate ceramics promote bone regeneration. Journal of Materials Science: Matrials in Medicine nº 14, (2003).

DOI: 10.1023/a:1022824505404

Google Scholar

[7] Jianxin Wang, Weiqun Chen, Yubao Li, Sanjun Fan, Jie Weng, Xinggdong Zhag; Biological evaluation of biphasic calcium phosphate ceramic vertebral laminae. Biomaterilas, nº 19, (1998), pp.1387-1392.

DOI: 10.1016/s0142-9612(98)00014-3

Google Scholar

[8] T. Tanaka, S. Kitasato, M. Chazono, Y. Kumagga, T. Iida, M. Mitsuhashi, A. Kakuta and K. Marumo. Use of an injeectable complex of b-tricalcium phosphate granules, hyaluronate, and fibroblast growth factor-2 on repair of unstable intertrochanteric fractures. The Open Biomedical Engineering Journal, nº 6, (2012).

DOI: 10.2174/1874120701206010098

Google Scholar

[9] Nelson H. A. Camargo, Sarah A. de Lima, Enori Gemelli; Synthesis and Characterization of Hydroxyapatite/TiO2n Nanocomposites for Bone Tissue Regeneration, American Journal of Biomedical Engineering, vol. 2, (2012), pp.41-47.

DOI: 10.5923/j.ajbe.20120202.08

Google Scholar

[10] Dalmônico, G. M. L., Síntese e caracterização de fosfato de cálcio e de hidroxiapatita: elaboração de composições bifásicas HA/TCP-b para aplicações biomédicas. Dissertação de mestrado em Ciência e Engenharia de Materiais, Universidade do Estado de Santa Catarina, Joinville-SC, (2012).

DOI: 10.14393/19834071.2016.32970

Google Scholar

[11] B. Lautre, M. Descamps, C. Delecourt, M. Blary, P. Hardouin; Porous HA ceramic for bone replacement: role of the pores and interconnections experimental study in the rabbit, The Journal of Materials Science: Materials in Medicine nº 12, (2001).

DOI: 10.1023/a:1011256107282

Google Scholar

[12] A. L. Rosa, M. M. Beloti, P. T. Oliveira, R. Van Noort. Osseointegration and osseoconductivity of hydroxyapatite of different microporosite. Journal of Materials Science: Materials in Medicine nº 13 (2002), pp.1071-1075.

DOI: 10.1023/a:1020305008042

Google Scholar

[13] Satyavrata Samavedi, Abby R. Whittington, Aaron S. Goldstein. Calcium phosphate ceramics in bone tissue engineering: A review of properties and their influence on cell behavior. Acta Biomaterialia, nº 9, (2013), pp.8037-8045.

DOI: 10.1016/j.actbio.2013.06.014

Google Scholar

[14] Sergey V. Dorozhkin, Biphasic, triphasic and multiphasic calcium phosphetes. Acta Biomaterialia, nº 8, (2012), pp.963-977.

DOI: 10.1016/j.actbio.2011.09.003

Google Scholar

[15] Hassna R. R. Ramay, M. Zhang; Biphasic calcium phosphate nanocomposite porous scaffolds for load-bearing bone tissue engineering. Biomaterials, nº 25, (2004), pp.5171-5180.

DOI: 10.1016/j.biomaterials.2003.12.023

Google Scholar

[16] Dubois, J. C., Souchier, C., Couble, M. L., Exbrayat, P., Lissac, M. Na image analysis method for the study of cell adhesion to biomaterials. Biomaterials vol. 20, (1999), pp.1841-1849.

DOI: 10.1016/s0142-9612(99)00082-4

Google Scholar

[17] Delima, S.; Souza, J.; Camargo, N.; Pupio, F.; Santos, R.; Gemelli, E. Síntese e Caracterização de Pós Nanoestruturados de Hidroxiapatita. 5º Congresso Latino Americano de órgãos Artificiais e Biomateriais - COLAOB'2008, Ouro Preto - MG. v. 1. (2008).

Google Scholar

[18] Silva, R.F. Estudo de Caracterização de Pós Nanoestruturados de Fosfato de Cálcio e Nanocompósitos Fosfato de cálcio/SiO2n Para Aplicações Biomédicas. Dissertação de Mestrado - UDESC/Joinville, (2007), p.96.

DOI: 10.47749/t/unicamp.2012.870343

Google Scholar

[19] Pennings, E.C.M.; Grellner, W. Precise non destrutive determination of the density of ceramic. Journal American Ceramic. Society, v. 72, n. 7, (1989), pp.1268-1270.

DOI: 10.1111/j.1151-2916.1989.tb09724.x

Google Scholar

[20] João Costa-Rodrigues, Anabela Fernandes, Maria A. Lopes, Maria H. FERNANDES Hydroxyapatite surface roughness: Complex modulation of the osteoclastogenesis of human precursor cells. Acta Materialia, vol. 8, (2012), pp.1137-1145.

DOI: 10.1016/j.actbio.2011.11.032

Google Scholar

[21] H. Ivankvic, G. Gallego Ferrer, E. Tkalcec, S. Orlic, M. Ivankovic Preparation of highly porous hydroxyapatite from cuttlefish bone. J. Mater. Sci: Mater. Med. Vol. 20, (2009), pp.1039-1046.

DOI: 10.1007/s10856-008-3674-0

Google Scholar

[22] B. Viswanath, N. Ravishankar, Controlled synthesis of plate-shaped hydroxyapatite and implications for the morphology of the apatite phase in bone. Biomaterials, vol. 29, (2008), pp.4855-4863.

DOI: 10.1016/j.biomaterials.2008.09.001

Google Scholar

[23] Chun-Jen Liao, Feng-Huei Lin, Ko-Shao Chen, Jui-Sheng Sun, Thermal decomposition and reconstitution of hydroxyapatite in air atmosphere. Biomaterials, vol. 20, (1999), pp.1807-1813.

DOI: 10.1016/s0142-9612(99)00076-9

Google Scholar

[24] Daiwon Choi, Prashant N. Kumta, Mechano-chimical synthesis and characterization of nanostructured b-TCP powder. Materials Science & Engineering C, vol. 27, (2007), pp.377-381.

DOI: 10.1016/j.msec.2006.05.035

Google Scholar