[1]
C.D. Reyes, T. A. Petrie, K. L. Burns, Zvi Schwartz, A. J. García, Biomolecular surface coating to enhance orthopaedic tissue healing and integration, Biomaterials. 28 (2007) 3228-3235.
DOI: 10.1016/j.biomaterials.2007.04.003
Google Scholar
[2]
K. S. Brammer, S. Oh, C. J. Cobb, L.M. Bjursten, H. Heyde, S. Jin, Improved bone-forming functionality on diameter-controlled TiO2nanotube surface, Acta Biomaterialia. 5 (2009) 3215-3223.
DOI: 10.1016/j.actbio.2009.05.008
Google Scholar
[3]
M. Peter, N.S. Binulal, S.V. Nair, N. Selvamurugan, H. Tamura, R. Jayakumar, Novel biodegradable chitosan-gelatin/nano-bioactive glass ceramic composite scaffolds for alveolar bone tissue engineering, Chem. Eng. J. 158 (2010) 353-361.
DOI: 10.1016/j.cej.2010.02.003
Google Scholar
[4]
A.V. Bulcke, B. Bogdanov, N. D. Rooze, E. H. Schacht, M. Cornelissen, H. Berghmans, Structural and Rheological Properties of Methacrylamide Modified Gelatin Hydrogels Biomacromolecules. 1 (2000) 31-38.
DOI: 10.1021/bm990017d
Google Scholar
[5]
M.C. Chang, C. C. Ko, W.H. Douglas, Preparation of hydroxyapatite–gelatin nanocomposite, Biomaterials. 24 (2003) 2853-2862.
DOI: 10.1016/s0142-9612(03)00115-7
Google Scholar
[6]
V. Karageorgiou, D. Kaplan, Porosity of 3D biomaterial scaffolds and osteogenesis, Biomaterials. 26 (2005) 5474-5491.
DOI: 10.1016/j.biomaterials.2005.02.002
Google Scholar
[7]
G. Tan, L. Zhang, C. Ning, X. Liu, J. Liao, Preparation and characterization of APTES films on modification titanium by SAMs, Thin. Sol. Fil. 519 (2011) 4997-5001.
DOI: 10.1016/j.tsf.2011.01.068
Google Scholar
[8]
Z.A. Nur Hanani, Y.H. Roos, J.P. Kerry, Use of beef, pork and fish gelatin sources in the manufacture of films and assessment of their composition and mechanical properties, Food Hydrocolloids. 29 (2012) 144-151.
DOI: 10.1016/j.foodhyd.2012.01.015
Google Scholar
[9]
J. Xie, C. Riley, M. Kumar, K. Chittur, FTIR/ATR study of protein adsorption and brushite transformation to hydroxyapatite, Biomaterials. 23 (2002) 3609.
DOI: 10.1016/s0142-9612(02)00090-x
Google Scholar
[10]
S. Patil, A. Sandberg, E. Heckert, W. Self, S. Seal, Protein adsorption and cellular uptake of cerium oxide nanoparticles as a function of zeta potential, Biomaterials. 28 (2007) 4600-4607.
DOI: 10.1016/j.biomaterials.2007.07.029
Google Scholar
[11]
M. S. Lord, M. Foss, F. Besenbacher, Influence of nanoscale surface topography on protein adsorption and cellular response, Nano Today. 5 (2010) 66-78.
DOI: 10.1016/j.nantod.2010.01.001
Google Scholar
[12]
P. E. Scopelliti, A. Borgonovo, M. Indrieri, L. Giorgetti, G. Bongiorno, R. Carbone, A. Podestà, P. Milani, The effect of surface nanometre-scale morphology on protein adsorption, PloS One. 5 (2010) e11862.
DOI: 10.1371/journal.pone.0011862
Google Scholar
[13]
T. Sakiyama, J. Tomura, K. Imamur, K. Nakanishi, Adsorption characteristics of bovine serum albumin and its peptide fragments on a stainless steel surface, Colloids & Surf B. 33 (2004) 77.
DOI: 10.1016/j.colsurfb.2003.08.010
Google Scholar