Morphology and Conductivity of Self-Assembled Pyrene-Perylenetetracarboxylic Diimide Dyad

Article Preview

Abstract:

One perylenetetracarboxylic diimide (PDI) derivatives (PDI 1) linked with pyrene by flexible chain at the bay positions was synthesized and the molecular structure was characterized by 1H NMR, MALDI-TOF mass spectra as well as elemental analysis. The molecular self-assembly were prepared from solution via a slow evaporation of solvent. The properties of these molecular aggregates were studied by electronic absorption and fluorescence spectra. The morphologies and structures were examined by scanning electronic microscopy (SEM) and X-ray diffraction (XRD) techniques. The conducting properties were evaluated by currentvoltage (IV) measurements. The results revealed highly ordered structure for these molecular self-assembly. The thin solid film fabricated from these molecular self-assembly show an electric conductivity as high as 4.85 × 10-4 S cm-1 under the ambient light, which means this compound might be used as a semiconductor in nanoelectronics.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

911-914

Citation:

Online since:

June 2014

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] X. Li, L.E. Sinks, B. Rybtchinski, M.R. Wasielewski, Ultrafast Aggregate-to-Aggregate Energy Transfer within Self-assembled Light-Harvesting Columns of Zinc Phthalocyanine Tetrakis(Perylenediimide) J. Am. Chem. Soc. 126 (2004) 10810-10811.

DOI: 10.1021/ja047176b

Google Scholar

[2] Y. Chen, L. Chen, G. Qi, H. Wu, Y. Zhang, L. Xue, P. Zhu, P. Ma, X. Li, Self-Assembled Organic−Inorganic Hybrid Nanocomposite of a Perylenetetracarboxylic Diimide Derivative and CdS, Langmuir 26 (2010) 12473-12478.

DOI: 10.1021/la102094d

Google Scholar

[3] L.E. Sinks, B. Rybtchinski, M. Iimura, B.A. Jones, A.J. Goshe, X. Zuo, D.M. Tiede, X. Li, M.R. Wasielewski, Self-Assembly of Photofunctional Cylindrical Nanostructures Based on Perylene-3, 4: 9, 10-bis(dicarboximide), Chem. Mater. 17 (2005).

DOI: 10.1021/cm051461s

Google Scholar

[4] L. Xue, H. Wu, Y, Shi, H. Liu, Y. Chen, Xi. Li, Supramolecular Organogels Based on Perylenetetracarboylic Diimide Dimer or Hexamer, Soft. Matt. 7 (2011) 6213-6221.

DOI: 10.1039/c1sm05435j

Google Scholar

[5] T. M. Figueira-Duarte, K. Müllen, Pyrene-Based Materials for Organic Electronics, Chem. Rev. 111 (2011) 7260-7314.

DOI: 10.1021/cr100428a

Google Scholar

[6] B. K. Kaletas, R. Dobrawa, A. Sautter, F. Würthner, M. Zimine, L. De Cola, W. René M, Photoinduced Electron and Energy Transfer Processes in a Bichromophoric Pyrene-Perylene Bisimide System,J. Phys. Chem. A 108 (2004) 1900-(1909).

DOI: 10.1021/jp0372688

Google Scholar

[7] Y. Chen, M. Bouvet, T. Sizun, Y. Gao, C. Plassard, E. Lesniewska, J. Jiang, Facile approaches to build ordered amphiphilic tris(phthalocyaninato) europium triple-decker complex thin films and their comparative performances in ozone sensing, Phys. Chem. Chem. Phys. 12 (2010).

DOI: 10.1039/c0cp00381f

Google Scholar

[8] Y. Chen, Y. Feng, J. Gao, M. Bouvet, Self-assembled aggregates of amphiphilic perylene diimide–based semiconductor molecules: Effect of morphology on conductivity J. Colloid Interface Sci. 368 (2012) 387–394.

DOI: 10.1016/j.jcis.2011.10.076

Google Scholar

[9] S. Vajiravelu, L. Ramunas, G.J. Vidas, G. Valentas, J. Vygintas, S. Valiyaveettil, Effect of substituents on the transport properties of bay substituted perylene diimide derivatives, J. Mater. Chem. 19 (2009) 4268-4275.

DOI: 10.1039/b901847f

Google Scholar

[10] F. Würthner, C. Thalacker, S. Diele, C. Tschierske, Fluorescent J-type Aggregates and Thermotropic Columnar Mesophases of Perylene Bisimide Dyes, Chem. Eur. J. 7 (2001) 2245-2253.

DOI: 10.1002/1521-3765(20010518)7:10<2245::aid-chem2245>3.0.co;2-w

Google Scholar

[11] D. Schlettwein, H. Graaf, J. -P. Meyer, T. Oekermann, N.I. Jaeger, Molecular Interactions in Thin Films of Hexadecafluorophthalocyaninatozinc (F16PcZn) as Compared to Islands of N, N'-Dimethylperylene-3, 4, 9, 10-biscarboximide (MePTCDI) J. Phys. Chem. B 103 (1999).

DOI: 10.1021/jp983111h

Google Scholar

[12] Z. Chen, V. Stepanenko, V. Dehm, P. Prins, L. D. A. Siebbeles, J. Seibt, P. Marquetand, V. Engel, F. Würthner, Photoluminescence and Conductivity of Self-Assembled π–π Stacks of Perylene Bisimide Dyes, Chem. Eur. J. 13 (2007) 436-439.

DOI: 10.1002/chem.200600889

Google Scholar

[13] A. Babel, S.A. Jenekhe, High Electron Mobility in Ladder Polymer Field-Effect Transistors, J. Am. Chem. Soc. 125 (2003) 13656-13657.

DOI: 10.1021/ja0371810

Google Scholar

[14] Y. Che, X. Yang, G. Liu, C. Yu, H. Ji, J. Zuo, J. Zhao, L. Zang, Ultrathin n-Type Organic Nanoribbons with High Photoconductivity and Application in Optoelectronic Vapor Sensing of Explosives, J. Am. Chem. Soc. 132 (2010) 5743-5750.

DOI: 10.1021/ja909797q

Google Scholar

[15] Z. Wang, C.J. Medforth, J.A. Shelnutt, Porphyrin Nanotubes by Ionic Self-Assembly, J. Am. Chem. Soc. 126 (2004) 15954-14955.

DOI: 10.1021/ja045068j

Google Scholar