[1]
M. Wazne, D.H. Moon, S.C. Jagupilla, S.C. Jagupilla, C. Christodoulatos, D. Dermatas, M. Chrysochoou, Remediation of chromite ore processing residue using ferrous sulfate and calcium polysulfide, Geosci. J., 11 (2007) 105-110.
DOI: 10.1007/bf02913922
Google Scholar
[2]
S. Dantu, Heavy metals concentration in soils of southeastern part of Ranga Reddy district, Andhra Pradesh, India, Environ. Monit. Assess., 149 (2009) 213-222.
DOI: 10.1007/s10661-008-0195-8
Google Scholar
[3]
D. Zhang, S. He, R. Cai, K. Peng, Z. Hu, H. Pang, H. Kong, F. Zhang, Study on the remediation of chromite ore processing residue by pyrolysis process, Environ. Pollut. & Control., 31 (2009) 1-5.
DOI: 10.1016/j.biortech.2009.01.003
Google Scholar
[4]
M.C. Graham, J.G. Farmer, P. Anderson, E. Paterson, S. Hillier, D.G. Lumsdon, R.J.F. Bewley, Calcium polysulfide remediation of hexavalent chromium contamination from chromite ore processing residue, Sci. Total Environ., 364 (2006) 32-44.
DOI: 10.1016/j.scitotenv.2005.11.007
Google Scholar
[5]
J.G. Farmer, E. Paterson, R.J.F. Bewley, J.S. Geelhoed, S. Hillier, J.C.L. Meeussen, D.G. Lumsdon, R.P. Thomas, M.C. Graham, The implications of integrated assessment and modelling studies for the future remediation of chromite ore processing residue disposal sites, Sci. Total Environ., 360 (2006).
DOI: 10.1016/j.scitotenv.2005.08.027
Google Scholar
[6]
T. Wang, M. He, Q. Pan, A new method for the treatment of chromite ore processing residues, J. Hazard. Mater., 149 (2007) 440-444.
DOI: 10.1016/j.jhazmat.2007.04.009
Google Scholar
[7]
Y.L. Wei, H.F. Hsieh, Y.S. Peng, J.C. Yang, H. Paul Wang, C.Y. Lin, W.L. Shih, C.C. Hsu, Thermal detoxification and bloating of chromium(VI) with bentonite, Nucl. Instrum. Methods Phys. Res., Sect. A, 619 (2010) 108-111.
DOI: 10.1016/j.nima.2009.10.130
Google Scholar
[8]
C. Wu, H. Zhang, P. He, L. Shao, Thermal stabilization of chromium slag by sewage sludge: Effects of sludge quantity and temperature, J. Environ. Sci. -China, 22 (2010) 1110-1115.
DOI: 10.1016/s1001-0742(09)60225-4
Google Scholar
[9]
D. Zhang, S. He, L. Dai, X. Hu, D. Wu, K. Peng, G. Bu, H. Pang, H. Kong, Treatment of Chromite Ore Processing Residue by pyrolysis with rice straw, Chemosphere, 77 (2009) 1143-1145.
DOI: 10.1016/j.chemosphere.2009.08.023
Google Scholar
[10]
J. Du, J. Lu, Q. Wu, C. Jing, Reduction and immobilization of chromate in chromite ore processing residue with nanoscale zero-valent iron, J. Hazard. Mater., 215-216 (2012) 152-158.
DOI: 10.1016/j.jhazmat.2012.02.049
Google Scholar
[11]
H. -S. Tai, C. -J.G. Jou, Immobilization of chromium-contaminated soil by means of microwave energy, J. Hazard. Mater., 65 (1999) 267-275.
DOI: 10.1016/s0304-3894(98)00274-x
Google Scholar
[12]
L. Yang, Y. Wang, L. Li, H. Liang, H. Gao, X. Su, J. Fan, L. Zhang, Technologic research on detoxification of residue with chromium through radiation of microwave, Chin. J. Environ. Eng., 2 (2008) 820-825.
Google Scholar
[13]
T.L. Rinehart, D.G. Schulze, R.M. Bricka, S. Bajt, E.R. Blatchley, Chromium leaching vs. oxidation state for a contaminated solidified/stabilized soil, J. Hazard. Mater., 52 (1997) 213-221.
DOI: 10.1016/s0304-3894(96)01808-0
Google Scholar
[14]
R. Badreddine, A.N. Humez, U. Mingelgrin, A. Benchara, F. Meducin, R. Prost, Retention of trace metals by solidified/stabilized wastes: Assessment of long-term metal release, Environ. Sci. Technol., 38 (2004) 1383-1398.
DOI: 10.1021/es0209520
Google Scholar
[15]
H. -S. Shi, L. -L. Kan, Study on the properties of chromium residue-cement matrices (CRCM) and the influences of superplasticizers on chromium(VI)-immobilising capability of cement matrices, J. Hazard. Mater., 162 (2009) 913-919.
DOI: 10.1016/j.jhazmat.2008.05.117
Google Scholar
[16]
J. Davidovits, 30 years of successes and failures in geopolymer applications. Market trends and potential breakthroughs, in: Keynote Conference on Geopolymer Conference, (2002).
Google Scholar
[17]
J.G.S. Van Jaarsveld, J.S.J. Van Deventer, A. Schwartzman, The potential use of geopolymeric materials to immobilise toxic metals: Part II. Material and leaching characteristics, Miner. Eng., 12 (1999) 75-91.
DOI: 10.1016/s0892-6875(98)00121-6
Google Scholar
[18]
S.F. Liu, P.M. Wang, Z.J. Li, I.M.C. Lo, An FTIR and XPS study of immobilization of chromium with fly ash based geopolymers, Spectrosc. Spect. Anal., 28 (2008) 67-71.
Google Scholar
[19]
Y. Luna, X. Querol, D. Antenucci, E. -A. Jdid, C. Fernandez-Pereira, J. Vale, Immobilization of a metallurgical waste using fly ash-based geopolymers, in: 2007 World of Coal Ash, Covington, Kentucky, USA, (2007) 7-10.
DOI: 10.1016/j.fuel.2008.01.021
Google Scholar
[20]
M.T. Jin, Q. Zhang, M.X. Lou, L.J. Wang, Immobilization of Heavy Metal Ions in Fly Flashed-Geopolymer, Bull. Chin. Ceram. Soc., 3 (2007) 011.
Google Scholar
[21]
J.Z. Xu, Y.L. Zhou, R.X. Tang, Study on the solidification of heavy metals by fly ash based geopolymers, J. Build. Mater., 9 (2006) 341-346.
Google Scholar
[22]
Y.S. Zhang, W. Sun, Q.L. Chen, L. Chen, Synthesis and heavy metal immobilization behaviors of slag based geopolymer, J. Hazard. Mater., 143 (2007) 206-213.
Google Scholar
[23]
J. Zhang, J.L. Provis, D. Feng, J.S.J. van Deventer, Geopolymers for immobilization of Cr6+, Cd2+, and Pb2+, J. Hazard. Mater., 157 (2008) 587-598.
DOI: 10.1016/j.jhazmat.2008.01.053
Google Scholar
[24]
Q.Y. Lu, Research of preparation ang application of geopolymer, in, Fu Zhou University, (2005).
Google Scholar
[25]
U.S. EPA, Toxicity Characteristic Leaching Procedure, Method 1311, in: E.P. Agency (Ed. ), Washington, DC, USA, (1992).
Google Scholar