Simultaneous Reduction and Immobilization of Cr2O72- in Metakaolinite-Based Geopolymer Complexed Reductant

Article Preview

Abstract:

Reduction and immobilization of Cr (VI) as Cr2O72- is investigated by using metakaolinite-based geopolymer complexed reductant. Without reductants, the leached Cr concentration from metakaolinite-based geopolymer containing Cr (VI) is very high. Adding reductants as FeCl2·4H2O, FeSO4·7H2O, and Na2S·9H2O respectively during geopolymerization, the leached Cr concentration is below 5 mg L-1 with high Cr immobilization rate above 99 %. By comparison with the immobilization of Cr (III), the added reductants reduced Cr (VI) to Cr (III) which can be locked successfully in the amorphous structure of geopolymer. Meanwhile, Cr (VI) initial concentration is lower than 0.7 wt. % in metakaolinite-based geopolymer, the above reductants can all meet the requirements. While for Cr (VI) initial concentration larger than 0.7 wt. %, Na2S·9H2O is more appropriate. Such a simultaneous reduction and immoboilization process enables the feasibility of using metakaolinite-based geopolymer complexed reductant to implement a one-step procedure for chromite ore processing residue cleanup.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

892-897

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Wazne, D.H. Moon, S.C. Jagupilla, S.C. Jagupilla, C. Christodoulatos, D. Dermatas, M. Chrysochoou, Remediation of chromite ore processing residue using ferrous sulfate and calcium polysulfide, Geosci. J., 11 (2007) 105-110.

DOI: 10.1007/bf02913922

Google Scholar

[2] S. Dantu, Heavy metals concentration in soils of southeastern part of Ranga Reddy district, Andhra Pradesh, India, Environ. Monit. Assess., 149 (2009) 213-222.

DOI: 10.1007/s10661-008-0195-8

Google Scholar

[3] D. Zhang, S. He, R. Cai, K. Peng, Z. Hu, H. Pang, H. Kong, F. Zhang, Study on the remediation of chromite ore processing residue by pyrolysis process, Environ. Pollut. & Control., 31 (2009) 1-5.

DOI: 10.1016/j.biortech.2009.01.003

Google Scholar

[4] M.C. Graham, J.G. Farmer, P. Anderson, E. Paterson, S. Hillier, D.G. Lumsdon, R.J.F. Bewley, Calcium polysulfide remediation of hexavalent chromium contamination from chromite ore processing residue, Sci. Total Environ., 364 (2006) 32-44.

DOI: 10.1016/j.scitotenv.2005.11.007

Google Scholar

[5] J.G. Farmer, E. Paterson, R.J.F. Bewley, J.S. Geelhoed, S. Hillier, J.C.L. Meeussen, D.G. Lumsdon, R.P. Thomas, M.C. Graham, The implications of integrated assessment and modelling studies for the future remediation of chromite ore processing residue disposal sites, Sci. Total Environ., 360 (2006).

DOI: 10.1016/j.scitotenv.2005.08.027

Google Scholar

[6] T. Wang, M. He, Q. Pan, A new method for the treatment of chromite ore processing residues, J. Hazard. Mater., 149 (2007) 440-444.

DOI: 10.1016/j.jhazmat.2007.04.009

Google Scholar

[7] Y.L. Wei, H.F. Hsieh, Y.S. Peng, J.C. Yang, H. Paul Wang, C.Y. Lin, W.L. Shih, C.C. Hsu, Thermal detoxification and bloating of chromium(VI) with bentonite, Nucl. Instrum. Methods Phys. Res., Sect. A, 619 (2010) 108-111.

DOI: 10.1016/j.nima.2009.10.130

Google Scholar

[8] C. Wu, H. Zhang, P. He, L. Shao, Thermal stabilization of chromium slag by sewage sludge: Effects of sludge quantity and temperature, J. Environ. Sci. -China, 22 (2010) 1110-1115.

DOI: 10.1016/s1001-0742(09)60225-4

Google Scholar

[9] D. Zhang, S. He, L. Dai, X. Hu, D. Wu, K. Peng, G. Bu, H. Pang, H. Kong, Treatment of Chromite Ore Processing Residue by pyrolysis with rice straw, Chemosphere, 77 (2009) 1143-1145.

DOI: 10.1016/j.chemosphere.2009.08.023

Google Scholar

[10] J. Du, J. Lu, Q. Wu, C. Jing, Reduction and immobilization of chromate in chromite ore processing residue with nanoscale zero-valent iron, J. Hazard. Mater., 215-216 (2012) 152-158.

DOI: 10.1016/j.jhazmat.2012.02.049

Google Scholar

[11] H. -S. Tai, C. -J.G. Jou, Immobilization of chromium-contaminated soil by means of microwave energy, J. Hazard. Mater., 65 (1999) 267-275.

DOI: 10.1016/s0304-3894(98)00274-x

Google Scholar

[12] L. Yang, Y. Wang, L. Li, H. Liang, H. Gao, X. Su, J. Fan, L. Zhang, Technologic research on detoxification of residue with chromium through radiation of microwave, Chin. J. Environ. Eng., 2 (2008) 820-825.

Google Scholar

[13] T.L. Rinehart, D.G. Schulze, R.M. Bricka, S. Bajt, E.R. Blatchley, Chromium leaching vs. oxidation state for a contaminated solidified/stabilized soil, J. Hazard. Mater., 52 (1997) 213-221.

DOI: 10.1016/s0304-3894(96)01808-0

Google Scholar

[14] R. Badreddine, A.N. Humez, U. Mingelgrin, A. Benchara, F. Meducin, R. Prost, Retention of trace metals by solidified/stabilized wastes: Assessment of long-term metal release, Environ. Sci. Technol., 38 (2004) 1383-1398.

DOI: 10.1021/es0209520

Google Scholar

[15] H. -S. Shi, L. -L. Kan, Study on the properties of chromium residue-cement matrices (CRCM) and the influences of superplasticizers on chromium(VI)-immobilising capability of cement matrices, J. Hazard. Mater., 162 (2009) 913-919.

DOI: 10.1016/j.jhazmat.2008.05.117

Google Scholar

[16] J. Davidovits, 30 years of successes and failures in geopolymer applications. Market trends and potential breakthroughs, in: Keynote Conference on Geopolymer Conference, (2002).

Google Scholar

[17] J.G.S. Van Jaarsveld, J.S.J. Van Deventer, A. Schwartzman, The potential use of geopolymeric materials to immobilise toxic metals: Part II. Material and leaching characteristics, Miner. Eng., 12 (1999) 75-91.

DOI: 10.1016/s0892-6875(98)00121-6

Google Scholar

[18] S.F. Liu, P.M. Wang, Z.J. Li, I.M.C. Lo, An FTIR and XPS study of immobilization of chromium with fly ash based geopolymers, Spectrosc. Spect. Anal., 28 (2008) 67-71.

Google Scholar

[19] Y. Luna, X. Querol, D. Antenucci, E. -A. Jdid, C. Fernandez-Pereira, J. Vale, Immobilization of a metallurgical waste using fly ash-based geopolymers, in: 2007 World of Coal Ash, Covington, Kentucky, USA, (2007) 7-10.

DOI: 10.1016/j.fuel.2008.01.021

Google Scholar

[20] M.T. Jin, Q. Zhang, M.X. Lou, L.J. Wang, Immobilization of Heavy Metal Ions in Fly Flashed-Geopolymer, Bull. Chin. Ceram. Soc., 3 (2007) 011.

Google Scholar

[21] J.Z. Xu, Y.L. Zhou, R.X. Tang, Study on the solidification of heavy metals by fly ash based geopolymers, J. Build. Mater., 9 (2006) 341-346.

Google Scholar

[22] Y.S. Zhang, W. Sun, Q.L. Chen, L. Chen, Synthesis and heavy metal immobilization behaviors of slag based geopolymer, J. Hazard. Mater., 143 (2007) 206-213.

Google Scholar

[23] J. Zhang, J.L. Provis, D. Feng, J.S.J. van Deventer, Geopolymers for immobilization of Cr6+, Cd2+, and Pb2+, J. Hazard. Mater., 157 (2008) 587-598.

DOI: 10.1016/j.jhazmat.2008.01.053

Google Scholar

[24] Q.Y. Lu, Research of preparation ang application of geopolymer, in, Fu Zhou University, (2005).

Google Scholar

[25] U.S. EPA, Toxicity Characteristic Leaching Procedure, Method 1311, in: E.P. Agency (Ed. ), Washington, DC, USA, (1992).

Google Scholar