Influence of Vibration on Thermomechanical Property and Transformation Behavior of TiNi Shape Memory Alloy

Article Preview

Abstract:

The strain recovery character and transformation behavior of a TiNi alloy are investigated by means of mechanical testing and DSC measurement before and after vibration. The DSC results show that the second reverse transformation peak temperature of TiNi alloys after vibration under constraint increases slightly during the subsequent heating, and the transformation heat decreases, while the transformation heat of the first reverse transformation increases. After constrained vibration, the first decline of the two-stage recovery strain obtained during the second heating process is obviously smaller than the one without vibration, and the total recoverable strain also decreases. For the prestrained martensitic TiNi fiber after a heating-cooling cycle, the two-way memory strain increases about 1.2% after vibration. All these phenomena are considered to be closely related to the vibratory stress relief during vibration.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

341-345

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Perkins., R. O. Sponholz, Metall. Trans., A15 (1984) p.313.

Google Scholar

[2] M. M. Reyhani, P. G. McCormick, Proc. ICOMAT-86. JIM, (1986) p.896.

Google Scholar

[3] L. Contardo, G. Guenin, Acta metall. mater. 38 (1990) p.1267.

Google Scholar

[4] Y. Liu, P. G. McCormick, Acta metall. mater. 38 (1990) p.1321.

Google Scholar

[5] R. Stalmans, J. Van Humbeeck, L. Delaey, Acta metall. mater. 40 (1992) p.501.

Google Scholar

[6] Y. Liu, Y. Liu, J. Van Humbeeck, Acta Metall. 47 (1999) p.199.

Google Scholar

[7] M.C. Sun, Y.H. Sun, R.K. Wang, Mater. Lett. 58 (2004) p.299.

Google Scholar

[8] G. P. Wozney, G. R. Crawmer, Welding Journal. 9 (1968) p.411.

Google Scholar

[9] R. Dawson, D. G. Moffat, J. Eng. Mater. Technol. 102 (1980) p.169.

Google Scholar

[10] C. A. WalKer, A. J. Waddell, D. J. Johnston, Journal of Process Mechanical Engineering. 209 (1995) p.51.

Google Scholar

[11] A. S. M. Y. Munsi, A. J. Waddell, C. A. Walker, Strain. 37 (4) (2001) p.141.

Google Scholar

[12] A. S. M. Y. Munsi, A. J. Waddell, C. A. Walker, Journal of Strain Analysis. 36 (5) (2001) p.453.

Google Scholar

[13] A. S. M. Y. Munsi, A. J. Waddell, C. A. Walker, Mater. Sci. Technol. 17 (2001) p.601.

Google Scholar

[14] T. M. Song,G. F. Zhang, C. J. Yin, Acta Scientiarium Naturalium Universitatis Jilinensis. 1 (1995) p.53. (in chinese).

Google Scholar

[15] L. S. Cui, Y. Li, Y. J. Zheng, D. Z. Yang, Mater. Lett. 47 (2001) p.286.

Google Scholar

[16] Y. Li, L. S. Cui, H. B. Xu, D. Z. Yang, Metal. Mater. Tran A. 34A, Feb (2003) p.219.

Google Scholar

[17] M. Piao, K. Otsuka, S. Miyazaki, and H. Horikawa, Mater. Trans. JIM. 34 (1993) p.919.

Google Scholar

[18] Y.J. Zheng, L.S. Cui, F. Zhang, and D.Z. Yang, J. Mater. Sci. Technol. 39 (2000) p.611.

Google Scholar