The G/G-Expansion Method for Solutions of Evolution Equations

Article Preview

Abstract:

The investigation about traveling wave solutions of nonlinear equations is an important and interesting subject because they play important role in understanding the nonlinear problems. By using the (G′/G)-expansion method proposed recently, we construct the travelling wave solutions involving parameters for the Hirota and Satsuma equations. The travelling wave solutions are expressed by the hyperbolic functions, the trigonometric functions and the rational functions. The numerical simulation figures are shown.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

425-428

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Hirota, R., The Direct Method in Soliton Theory. Cambridge University Press, Cambridge, (2004).

Google Scholar

[2] Ablowitz, M.J., Segur, H., Solitons and inverse scattering transform. SIAM, Philadelphia, (1981).

Google Scholar

[3] Fan, E.G., Extended tanh-function method and its applications to nonlinear equations. Phys. Lett. A 277 (2000), 212-218.

DOI: 10.1016/s0375-9601(00)00725-8

Google Scholar

[4] Malfliet, W., Solitary wave solutions of nonlinear wave equations. Am. J. Phys. 60 (1992) 650-654.

DOI: 10.1119/1.17120

Google Scholar

[5] Miura, R.M., Backlund Transformation. Springer-Verlag, New York, (1973).

Google Scholar

[6] Bluman, G.W., Kumei, S., Symmetries and Differential Equations. Springer-Verlag, Berlin, (1989).

Google Scholar

[7] Yan, C., A simple transformation for nonlinear waves. Phys. Lett. A 224 (1996) 77-84.

Google Scholar

[8] He, J.H., Wu, X.H., Exp-function method for nonlinear wave equations. Chaos Soliton. Fract. 30, (2006) 700-708.

DOI: 10.1016/j.chaos.2006.03.020

Google Scholar

[9] Wang, M., Li, X., Zhang, J., The G¢/G -expansion method and traveling wave and solutions of nonlinear evolution equations in mathematical physics. Physics Letters A 372 (2008) 417-423.

DOI: 10.1016/j.physleta.2007.07.051

Google Scholar

[10] Kudryashov, N.A., A note on the G¢/G -expansion method. Applied Mathematics and Computation 217, (2010) 1755-1758.

DOI: 10.1016/j.amc.2010.03.071

Google Scholar

[11] Li, X., Wang, M., The G¢/G -expansion method and traveling wave solutions for a higher-order nonlinear Schrodinger equation. Applied Mathematics and Computation 208 (2009) 440-445.

DOI: 10.1016/j.amc.2008.12.005

Google Scholar

[12] Bekir, A., Application of the G¢/G -expansion method for nonlinear evolution equations. Phys. Lett. A 372, (2008) 3400-3406.

DOI: 10.1016/j.physleta.2008.01.057

Google Scholar