Investigation of Phase Transformation and Optical Properties of TiO2 Thin Films Deposited by Electron Beam Evaporation

Article Preview

Abstract:

TiO2 thin films were deposited by ion beam assisted electron beam evaporation and annealed at 200, 300, 400 and 500 ¡æ in air for one hour. The crystal structures and morphology of the samples were analyzed by an X-ray diffractometer and an atomic force microscope. The transmittance spectra were recorded by a UV-visible spectrophotometer. The results show that both the as-deposited TiO2 thin film and that one annealed at 200 ¡æ are amorphous. The sample annealed at 300 ¡æ crystallizes in pure brookite phase and is preferentially oriented along the (121) plane. When the annealing temperature rises up to 400 and 500 ¡æ, TiO2 thin films turn into pure anatase phase. All the samples exhibit high transmittance in the visible region. With the increase of annealing temperature, the transmittance slightly declines and the optical bandgaps also slightly decreases.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 941-944)

Pages:

1279-1282

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Natsuhara, K. Matsumoto, N. Yoshida, T. Itoh, S. Nonomura, M. Fukawa, and K. Sato: Sol. Energy Mater. Sol. Cells Vol. 90 (2006), p.2867.

DOI: 10.1016/j.solmat.2006.05.001

Google Scholar

[2] D. Kim: Opt. Commun. Vol. 283 (2010), p.1792.

Google Scholar

[3] H. Long, G. Yang, A. Chen, Y. Li, and P. Lu: Opt. Commun. Vol. 282 (2009), p.1815.

Google Scholar

[4] Z. M. Seeley, A. Bandyopadhyay, and S. Bose: Thin Solid Films Vol. 519 (2010), p.434.

Google Scholar

[5] B. A. Nejand, S. Sanjabi, and V. Ahmadi: Vacuum Vol. 85 (2010), p.400.

Google Scholar

[6] T. Miyata, S. Tsukada, and T. Minami: Thin Solid Films Vol. 496 (2006), p.136.

Google Scholar

[7] Y. Shen, H. Yu, J. Yao, S. Shao, Z. Fan, H. He, and J. Shao: Opt. Laser Technol. Vol. 40 (2008), p.550.

Google Scholar

[8] C. Yang, H. Fan, Y. Xi, J. Chen, and Z. Li: Appl. Surf. Sci. Vol. 254 (2008), p.2685.

Google Scholar

[9] H. Pan, X. Qiu, I. N. Ivanov, H. M. Meyer, W. Wang, W. Zhu, M. P. Paranthaman, Z. Zhang, G. Eres, and B. Gu: Appl. Catal. B: Environ. Vol. 93 (2009), p.90.

Google Scholar

[10] B. I. Lee, S. Kaewgun, W. Kim, W. Choi, J. S. Lee, and E. Kim: J. Renew. Sustain. Energy Vol. 1 (2009), p.023101.

Google Scholar

[11] Y. Djaoued, R. Brüning, D, Bersani, P. P. Lottici, and S. Badilescu: Mater. Lett. Vol. 58 (2004), p.2618.

DOI: 10.1016/j.matlet.2004.03.034

Google Scholar

[12] I. N. Kuznetsova, V. Blaskov, I. Stambolova, L. Znaidi, and A. Kanaev: Mater. Lett. Vol. 59 (2005), p.3820.

Google Scholar

[13] Ü. Ö. A. Arier, and F. Z. Tepehan, J. Alloys Compd. Vol. 509 (2011), p.8262.

Google Scholar