[1]
Larsen, J.W. The effects of dissolved CO2 on coal structure and properties. International Journal of Coal Geology, 2004, 57, 63-70.
DOI: 10.1016/j.coal.2003.08.001
Google Scholar
[2]
Karacan C.Ö. Swelling-induced volumetric strains internal to a stressed coal associated with CO2 sorption. International Journal of Coal Geology, 2007, 72 , 209-220.
DOI: 10.1016/j.coal.2007.01.003
Google Scholar
[3]
Glass, A. S, Larsen, J.W. Specific interactions of organic bases with the Illinois No. 6 coal surface are the same as their hydrogen-bond strengths with phenol. Energy Fuels, 1994, 8, 284-285.
DOI: 10.1021/ef00043a043
Google Scholar
[4]
Jones, K.L. A Fundamental Study of the Sequestration of CO2 by Coal Seams and the Simultaneous Production of Methane Therefrom. In the 11th International Conference on Coal Science, San Francisco, CA, Sept. 30-Oct. 5, 2001, Paper No. 369.
Google Scholar
[5]
Ozdemir, E., Badie, I.M., Schroeder, K. CO2 capacity of Argonne premium coals. Fuel, 2004, 83, 1085-1094.
DOI: 10.1016/j.fuel.2003.11.005
Google Scholar
[6]
Goodman, A.L., Campus, L.M., Schroeder, K.T. Direct evidence of carbon dioxide sorption on Argonne premium coals using attenuated total reflectance-Fourier transform infrared spectroscopy. Energy Fuels, 2005, 19, 471-476.
DOI: 10.1021/ef0498824
Google Scholar
[7]
Day, S., Duffy, G., Sakurovs, R., et al. Effect of coal properties on CO2 sorption capacity under supercritical conditions. International Journal of Greenhouse Gas Control, 2008, 2, 342-352.
DOI: 10.1016/s1750-5836(07)00120-x
Google Scholar
[8]
White, C.M., Smith, D.H., Jones, K.L., et al. Sequestration of Carbon dioxide in coal with enhanced coalbed methane recovery: A review. Energy Fuels, 2005, 19, 659-724.
DOI: 10.1021/ef040047w
Google Scholar
[9]
Mirzaeian, M., Hall, P.J. The interaction of coal with CO2 and its effects on coal structure. Energy Fuels, 2006, 20, 2022-(2027).
DOI: 10.1021/ef060040+
Google Scholar
[10]
Antxustegi, M.M., Mackinnon, A.J., Hall, P.J. Effects of glass formation by solvents in differential scanning calorimetry investigations of solvent swollen coals. Energy Fuels, 1993, 7, 1026-1029.
DOI: 10.1021/ef00042a047
Google Scholar
[11]
Mackinnot, A.J., Hall, P.J. Properties of second order transitions in Argonne Premium coals. Fuel, 1996, 75, 85-88.
DOI: 10.1016/0016-2361(95)00200-6
Google Scholar
[12]
Jones, K. L. Methods for Characterizing the Acidic and Basic Surface Sites of Coal. Ph. D. Dissertation, Lehigh University, Bethlehem, PA, (1985).
Google Scholar
[13]
Pearson, R.G.J. Absolute electronegativity and hardness: Applications to organic chemistry. Organic Chemistry, 1989, 54, 1423-1430.
DOI: 10.1021/jo00267a034
Google Scholar
[14]
Dobrowolski, J.C., Jamróz, M.H. Infrared evidence for CO2 electron donor-acceptor complexes. Journal of Molecular Structure, 1992, 275, 211-219.
DOI: 10.1016/0022-2860(92)80196-o
Google Scholar
[15]
Jamróz, M. H, Dobrowolski, J. C, Bajdor, K., et al. Ab initio study of the v(CO2)mode in EDA complexes. Journal of Molecular Structure, 1995, 349, 9-12.
DOI: 10.1016/0022-2860(95)08696-s
Google Scholar
[16]
Leitner, W. The coordination chemistry of carbon dioxide and its relevance for catalysis: A critical survey. Coordination Chemistry Reviews, 1996, 153, 257-284.
DOI: 10.1016/0010-8545(95)01226-5
Google Scholar
[17]
Gibson, D. H. The organometallic chemistry of carbon dioxide. Chemistry Reviews, 1996, 96, 2063-(2096).
Google Scholar
[18]
Gibson, D. H. Carbon dioxide coordination chemistry: Metal complexes and surface-bound species. What relationships? Coordination Chemistry Reviews, 1999, 335, 185-186.
DOI: 10.1016/s0010-8545(99)00021-1
Google Scholar
[19]
Hartman, K. O and Hisatsune, I.C. Infrared Spectrum of Carbon Dioxide Anion Radical. Chemical Physics. 1966, 44, 1913-(1918).
DOI: 10.1063/1.1726961
Google Scholar
[20]
Alcock, N. W. Bonding and structure. Ellis Horwood: London, (1990).
Google Scholar
[21]
Quinga, E.M., Larsen, J.W. Noncovalent interactions in high-rank coals. Energy Fuels, 1987, 1, 300-304.
DOI: 10.1021/ef00003a014
Google Scholar
[22]
Derbyshire, F., Marzec, A., Schulten, H., et al. Molecular structure of coals: A debate. Fuel, 1989, 68, 1091-1106.
Google Scholar
[23]
Qin, K.Z., Guo S.H., Li S. Y. New concept on coal structure and new consideration for the generation mechanism of oil from coal. Chinese Science Bulletin, 1998, 43, 2025-(2035).
DOI: 10.1007/bf03183500
Google Scholar
[24]
Opaprakasit, P., Painter, P. Concerning the glass transition temperature of coal. Energy Fuels, 2003, 17, 354-358.
DOI: 10.1021/ef020186i
Google Scholar
[25]
Reucroft, P.J., Sethuraman, A.R. Effect of pressure on carbon dioxide induced coals swelling. Energy Fuels, 1987, 1, 72-75.
DOI: 10.1021/ef00001a013
Google Scholar
[26]
Romanov, V., Goodman A.L., Larsen, J.W. Errors in CO2 adsorption measurements caused by coal swelling. Energy Fuels, 2006, 20, 415-416.
DOI: 10.1021/ef050318i
Google Scholar
[27]
Ottiger, S., Pini, R., Storti, G., et al. Competitive adsorption equilibria of CO2 and CH4 on a dry coal. Asorption, 2008, 14, 539-556.
DOI: 10.1007/s10450-008-9114-0
Google Scholar
[28]
Milewska-Duda J, D. J, Nodzenski, A., Lakatos, J. Absorption and adsorption of methane and carbon dioxide in hard coal and active carbon. Langmuir, 2000, 16, 5458-5466.
DOI: 10.1021/la991515a
Google Scholar
[29]
Mazzotti M., Pini R., Storti G. Enhanced coalbed methane recovery. Journal of Supercritical Fluid, 2009, 47, 619-627.
DOI: 10.1016/j.supflu.2008.08.013
Google Scholar