Methanol Electro-Oxidation Using RuRh@Pt/C

Article Preview

Abstract:

A core-shell structure RuRh@Pt/C nanoparticles was prepared by using a two-step reduction method under ultrasonic promotion. The catalytic performance was tested in methanol electrooxidation. X-ray diffraction (XRD), scanning electron microscope (SEM) combined with cyclic voltammetry (CV) were used to characterize the obtained catalyst. The results showed that there was no alloy formed between the core RuRh and the shell Pt. The electrocatalytic activity of RuRh@Pt/C varied with the Ru/Rh ratio in the bimetallic core, among which the catalyst with the Ru/Rh ratio 1:2 and the Pt-shell thickness of 1.5 (Ru1Rh2@Pt1.5/C) showed the highest catalytic activity for methanol. With this catalyst, the current density of the oxidation peak for methanol electro-oxidation reached 2.3 times as that of Pt1.5/C while the corresponding peak potential shifted 60 mV negatively in comparing to that of Pt1.5/C. In addition, the catalyst with the core-shell structure of RuRh@Pt/C possessed much higher CO-tolerance for methanol electro-oxidation, indicating its promising application in low temperature fuel cell.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 953-954)

Pages:

1297-1302

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. J. Guo, Z. H. Jing. A novel co-precipitation method for preparation of Pt-CeO2 composites on multi-walled carbon nanotubes for direct methanol fuel cells, J. Power Sources, 2010, 195(12): 3802-3805.

DOI: 10.1016/j.jpowsour.2009.12.115

Google Scholar

[2] H. Du, B. Li, F. Kang, R Fu, Y Zeng. Carbon aerogel supported Pt-Ru catalysts for using as the anode of direct methanol fuel cells, Carbon, 20007, 45(2): 429-435.

DOI: 10.1016/j.carbon.2006.08.023

Google Scholar

[3] S. Chen, F. Ye, W. Lin. Carbon nanotubes-Nafion composites as Pt-Ru catalyst support for methanol electro-oxidation in acid media, Journal of Natural Gas Chemistry, 2009, 18(2): 199-204.

DOI: 10.1016/s1003-9953(08)60108-5

Google Scholar

[4] J. R. C. Salgado, R. G. Duarte, L. M. IIharco A. M. Botelho do Rego, A. M. Ferraria, M. G. S. Ferreira. Effect of functionalized carbon as Pt electrocatalyst support on the methanol oxidation reaction, Applied Catalysis B: Environmental, 2011, 102 (3-4): 496-504.

DOI: 10.1016/j.apcatb.2010.12.031

Google Scholar

[5] Y. P. Sun, L. Xing, K. Scott. Analysis of the kinetics of methanol oxidation in a porous Pt-Ru anode, J. Power Sources, 2010, 195 (1): 1-10.

DOI: 10.1016/j.jpowsour.2009.07.028

Google Scholar

[6] K. Han, J. Lee, H. Kim. Preparation and characterization of high metal content Pt-Ru alloy catalysts on various carbon blacks for DMFCs, Electrochimica Acta, 2006, 52 (4): 1697-1702.

DOI: 10.1016/j.electacta.2006.03.098

Google Scholar

[7] S. Wasmus, A. Küver. Methanol oxidation and direct methanol fuel cells: a selective review, Journal of Electroanalytical Chemistry, 1999, 461 (1-2): 14-31.

DOI: 10.1016/s0022-0728(98)00197-1

Google Scholar

[8] K. Matsuoka, Y. Iriyama, T. Abe, M. Matsuoka, Z. Ogumi. Alkaline direct alcohol fuel cells using an anion exchange membrane, J. Power Sources, 2005, 150: 27-31.

DOI: 10.1016/j.jpowsour.2005.02.020

Google Scholar

[9] W. M. Chen, G. Q. Sun, Z. X. Liang, Q. Mao, H. Q. Li, G. X. Wang, Q. Xin, H. Chang, C. Pak, D. Seung. The stability of a PtRu/C electrocatalyst at anode potentials in a direct methanol fuel cell, Journal of Power Sources, 2006, 160 (2006), p.933.

DOI: 10.1016/j.jpowsour.2006.02.069

Google Scholar

[10] X. W. Li, J. Y. Liu, Q. H. Huang, W Vogel, D. L. Akins, H. Yang. Effect of heat treatment on stability of gold particle modified carbon supported Pt–Ru anode catalysts for a direct methanol fuel cell, Electrochimica Acta, 2010, 56 (1): 278-284.

DOI: 10.1016/j.electacta.2010.08.083

Google Scholar

[11] P. Piela, C. Eickes, E. Brosha, F. Garzon, P. Zelenay. Ruthenium Crossover in Direct Methanol Fuel Cell with Pt-Ru Black Anode, J. Electrochem. Soc, 2004, 151: 2053-(2059).

DOI: 10.1149/1.1814472

Google Scholar

[12] N. Tsiouvaras, M. V. MartÍnez-Huerta, O. Paschos, U. Stimming, J. L. G. Fierro, M. A. Peňa. PtRuMo/C catalysts for direct methanol fuel cells: Effect of the pretreatment on the structural characteristics and methanol electrooxidation, International journal of hydrogen energy, 2010, 35(20): 11478-11488.

DOI: 10.1016/j.ijhydene.2010.06.053

Google Scholar

[13] Y. C. Zhao, Y. Cai, J. Tian, H. Lan. Facile preparation and excellent catalytic performance of PtRuPd hollow spheres Nanoelectrocatalysts, Materials Chemistry and Physics, 2009, 115: 831-834.

DOI: 10.1016/j.matchemphys.2009.02.048

Google Scholar

[14] L. Fang, F. J. Vidal-Iglesias, S. E. Huxter, G. A. Attard. A study of the growth and CO electrooxidation behaviour of PtRh alloys on Pt{100} single crystals, Journal of Electroanalytical Chemistry, 2008, 622 (1): 73-78.

DOI: 10.1016/j.jelechem.2008.05.003

Google Scholar

[15] R. Gómez, F. Javier Gutiérrez de Dios, J. M. Feliu. Carbon monoxide oxidation and nitrous oxide reduction on Rh/Pt (111) electrodes, Electrochimica Acta, 2004, 49: 1195-1208.

DOI: 10.1016/j.electacta.2003.07.014

Google Scholar

[16] R. Gómez, J. M. Feliu. Rhodium adlayers on Pt(111) monocrystalline surfaces. Electrochemical behavior and electrocatalysis, Electrochimica Acta, 1998, 44 (6-7): 1191-1205.

DOI: 10.1016/s0013-4686(98)00222-9

Google Scholar

[17] J. H. Choi, K. W. Park, I. S Park, W. H. Nam, Y. E. Sung. Methanol electro-oxidation and direct methanol fuel cell using Pt/Rh and Pt/Ru/Rh alloy catalysts, Electrochimica Acta, 2004, 50 (2-3): 787-790.

DOI: 10.1016/j.electacta.2004.01.109

Google Scholar

[18] Z. Liu, X. Y. Ling, X. Su, J. Y. Lee. 2004. Carbon-Supported Pt and PtRu Nanoparticles as Catalysts for a Direct Methanol Fuel Cell, J. Phys. Chem. B, 108: 8234-8240.

DOI: 10.1021/jp049422b

Google Scholar