Effect of Catalysts on Oxidation of Ruqigou Coal with NaOCl

Article Preview

Abstract:

The effect of molecular sieve, activated carbon, and nickel-based catalyst on oxidation of Ruqigou coal with NaOCl was investigated. The yields of diethyl ether-soluble fractions from reaction mixture are 67.3% for black test, 71.2% for molecular sieve, 68.6% for activated carbon and 70.3% for nickel-based catalyst, respectively. The results indicate that molecular sieve, nickel-based catalyst and activated carbon can all improve the oxidation reactivity of coal in aqueous NaOCl solution. Molecular sieve and nickel-based catalyst can convert most of the organic matters contained in coal into solvent-soluble species. The catalysis of molecular sieve is the highest, followed by nickel-based catalyst, activated carbon is relatively small.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 953-954)

Pages:

1303-1306

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T Oshika and A Okuwaki: Fuel vol. 73 (1994), pp.77-81.

Google Scholar

[2] K. Miura, K. Mae, H. Okutsu and N. Mizutani: Energy Fuels vol. 10 (1996), pp.1196-1201.

Google Scholar

[3] K. Mae, H. Shindo and K. Miura: Energy Fuels vol. 15 (2001), pp.611-617.

Google Scholar

[4] Z. X. Liu, Z. C. Liu, Z. M. Zong, X. Y. Wei, J. Wang and C. W. Lee: Energy Fuels vol. 17 (2003), pp.424-426.

Google Scholar

[5] S. R. Palmer, E. J. Hippo and X. A. Dorai: Fuel vol. 73 (1994), pp.161-169.

Google Scholar

[6] E. H. Cho and Q. Luo: Fuel Process. Technol. vol. 46 (1996), pp.25-39.

Google Scholar

[7] Y. G. Huang, Z. M . Zong, Z. S. Yao, Y. X. Zheng, J. Mou, G. F. Liu, J. P. Cao, M. J. Ding, K. Y. Cai, F. Wang, W. Zhao, Z. L. Xia and X. Y. Wei: Energy Fuels vol. 22 (2008), pp.1799-1806.

DOI: 10.1021/ef700589q

Google Scholar

[8] S. Murata, Y. Tani, M. Hiro, K. Kidena, L. Artok, M. Nomura and M. Miyake: Fuel vol. 80 (2001), pp.2099-2109.

DOI: 10.1016/s0016-2361(01)00093-x

Google Scholar

[9] J. S. Do and T. C. J. Chou: Appl. Electrochem. vol. 19 (1989), pp.922-927.

Google Scholar

[10] Z. S. Yao, X. Y. Wei, J. Lv, F. J. Liu, Y. G. Huang, J. J. Xu, F. J. Chen, Y. Huang, Y. Li, Y. Lu and Z. M. Zong: Energy Fuels vol. 24 (2010), P. 1801-1808.

DOI: 10.1021/ef9012505

Google Scholar

[11] G. Z. Gong, X. Y. Wei and Z. M. Zong: J Fuel Chem Technol vol. 40 (2012), P. 1-7.

Google Scholar

[12] S. K. Chakrabartty and H. O. Kretschmer: Fuel vol. 51 (1972), P. 160-163.

Google Scholar

[13] F. R. Mayo and N. A. Kirshen: Fuel vol. 58 (1979), P. 698-704.

Google Scholar

[14] R. G. Landolt: Fuel vol. 54 (1975), P. 299.

Google Scholar

[15] F. R. Mayo: Fuel vol. 54 (1975), P. 273-275.

Google Scholar