Computational Fluid Dynamics Study on the High Temperature Proton Exchange Membrane Fuel Cell

Article Preview

Abstract:

A two-dimensional non-isothermal steady state numerical model for high temperature polymer exchange membrane fuel cell based on Nafion212/SiO2 composite membrane was developed. Finite element method was used to solve electrochemical kinetics coupled with multi-component transport, flow, charge balance and energy conservation. The model-predicted fuel cell polarization curve was compared with published experimental result and a good agreement was found. The distributions of species and temperature in the fuel cell were predicted and the effects of the operational pressure and the porosity of gas diffusion layer on the performance of high temperature polymer exchange membrane were evaluated. A temperature rise of 5.8K was deserved when the operational pressure was 2atm, cathode relative humidity 59% and current density 500mA cm-2. The increasing of the operational pressure and the porosity of gas diffusion layer were found to be beneficial to the fuel cell performance.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 953-954)

Pages:

939-948

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Yi Bao-lian. Fuel cell-principle, technology, application [M]. Beijing:Chemical Industry Press(2003).

Google Scholar

[2] J. S. Wainright, J. T. Wang, D. Weng, R. F. Savinella, M. Littb. J. Electrochem. Soc. 142 (1995)L121- L123.

Google Scholar

[3] D. Cheddie, N. Munroe. J. Power Sources, 160(2006)215–223.

Google Scholar

[4] J. W. Hu, H. M. Zhang, J. Hu, Y. Zhai, B. Yi. J. Power Sources, 160(2006)1026–1034.

Google Scholar

[5] J. W. Hu, H. M. Zhang, G. Liu. Energy Conversion and Management, 49(2008)1019–1027.

Google Scholar

[6] K. Scott, S. Pilditch, M Mamlouk. J Appl Electrochem, 37(2007) 1245–1259.

Google Scholar

[7] J. Peng, J. Y. Shin, T. W. Song. J. Power Sources, 179(2008) 220-231.

Google Scholar

[8] F. Zenith, F. Seland, O.E. Kongstein, B. Børresen, R. Tunold, S. Skogestad, J. Power Sources 162 (2006) 215–227.

DOI: 10.1016/j.jpowsour.2006.06.022

Google Scholar

[9] J. Lobato, P. Canizares, M. A. Rodrigo, F. J. Pinar, E. Mena, D. Úbeda. International Journal of Hydrogen Energy, 35(2010)5510-5520.

DOI: 10.1016/j.ijhydene.2010.02.089

Google Scholar

[10] K. A. Mauritz, R. M. Warren, Macromolecules, 22(1989)1730-1734.

Google Scholar

[11] Z. G. Shao, P Joghee, I-Ming Hsing. Journal of Membrane Science. 229(2004)43–51.

Google Scholar

[12] N. H. Jalani, K. Dunn, R. Datta. Electrochimica Acta. 51(2005) 553–560.

Google Scholar

[13] G. Ye, C. A. Hayden, G. A. Goward. Macromolecules. 40(2007)1529-1537.

Google Scholar

[14] M. P. Rodgers, Z. Shi, S. Holdcroft. Journal of Membrane Science. 325(2008)346–356.

Google Scholar

[15] A. Su, Y. M. Ferng, J. C. Shih. Applied Thermal Engineering, 29(2009)3409–3417.

Google Scholar

[16] A. Su, Y. M. Ferng, J. C. Shih. Energy, 35(2010)16–27.

Google Scholar

[17] A. J. Bard, L. R. Faulkner, Electrochemical Methods, Wiley, New York, (1980).

Google Scholar

[18] J. Larminie, A. Dicks. Fuel Cell Systems Explained [M]. John Wiley and Sons Ltd., New York, USA, (2000).

Google Scholar

[19] D. M. Bernadi, M. W. Verbrugge, J. Electrochem. Soc. 139 (1992) 2477-2491.

Google Scholar

[20] T. E. Springer, T. A. Zawodzinski, S. Gottesfeld, J. Electrochem. Soc. 138 (1991) 2334-2342.

Google Scholar

[21] R. B. Bird, W. E. Stewart, E. N. Lightfoot, Transport Phenomena, John Wiley & Sons, New York, (1960).

Google Scholar

[22] R. E. Meredith, C. W. Tobias, Interscience Publishers, New York, (1962).

Google Scholar

[23] C. C. Ke, X. J. Li, S. G. Qu, Z. G. Shao, B. Yi. Polym. Adv. Tech. 23(2012) 92-98.

Google Scholar