Controllable Synthesis and Photocatalytic Activity of Ba0.6Mg0.4TiO3 Particles with Different Morphologies

Article Preview

Abstract:

Ba0.6Mg0.4TiO3 (BMT) particles with different morphologies were synthesized through hydrothermal method and their optical and photocatalytic properties were investigated. Their crystal structure and microstructures were characterized using X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM). XRD patterns demonstrate that the as-prepared samples are tetragonal structure. FESEM shows that BMT crystals can be fabricated in different morphologies by simply manipulating the reaction parameters of hydrothermal process. The UV-visible diffuse reflectance spectra (UV-vis DRS) reveal that the band gaps of BMT photocatalysts are about 2.37 - 2.51 eV. The as-prepared BMT photocatalysts exhibite higher photocatalytic activities in the degradation of methyl orange (MO) under visible light irradiation (λ > 420 nm) compared with traditional N-doped TiO2 (N-TiO2) and pure BaTiO3 (BTO). The high photocatalytic performance of BMT photocatalysts could be attributed to the recombination restraint of the e-/h+ pairs resulting from doping of Mg2+ ions. The influence of morphologies upon the photocatalytic properties of BMT was studied. Furthermore, BMT nanowires reveal the highest photocatalytic activity. Up to 94.0% MO is decolorized after visible light irradiation for 360 min.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 955-959)

Pages:

2267-2275

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. H. Shen Chan, T. Y. Wu, J. C. Juan and C. Y. Teha: J. Chem. Technol. Biotechnol. 86 (2011) 1130.

Google Scholar

[2] H. B. Lu, H. Li, L. Liao, J. C. Li, Y. Tian, M. Shuai, M. F. Hu and B. P. Zhu: Nanotechnol. 19 (2008) 045605.

Google Scholar

[3] J. G. Yu, Q. J. Xiang and M. H. Zhou: Appl. Catal. B: Environ. 90 (2009) 595.

Google Scholar

[4] R. Kralchevska, M. Milanova, M. Tsvetkov, D. Dimitrov and D. Todorovsky: J. Mater. Sci. 47 (2012) 4936.

DOI: 10.1007/s10853-012-6368-4

Google Scholar

[5] L. X. Zhang, P. Liu and Z. X. Su: J. Mater. Sci. 41 (2006) 7218.

Google Scholar

[6] D. G. Huang, S. J. Liao, S. Q. Quan, L. Liu, Z. J. He, J. B. Wan and W. B. Zhou: J. Mater. Sci. 42 (2007) 8193.

Google Scholar

[7] C. C. Chen, H. L. Bai, S. M. Chang, C. L. Chang and W. Den, J. Nanopart. Res. 9 (2007) 365.

Google Scholar

[8] Y. Tokihisa, H. Tada, N. Tohge, S. Ito, K. Hongo, R. Shiratsuchi and G. Nogami: J. Sol-Gel Sci. Techn. 22 (2001) 53.

DOI: 10.1023/a:1011212303299

Google Scholar

[9] J. Zhang, S. W. Liu, J. G. Yu and M. J. Jaroniec: Mater. Chem. 21 (2011) 14655.

Google Scholar

[10] H. Y. Zhou, Y. Peng and S. C. Qin: Chin. J. Chem. 29 (2011) 2345.

Google Scholar

[11] X. D. Tang, H. Q. Ye, Z. Zhao, H. Liu and C. X. Ma: Catal. Lett. 133 (2009) 362.

Google Scholar

[12] J. Xu, W. Z. Wang, M. Shang, E. P. Gao, Z. J. Zhang and J. Ren: J. Hazard. Mater. 196 (2011) 426.

Google Scholar

[13] L. S. Zhang, H. L. Wang, Z. G. Chen, P. K. Wong and J. S. Liu: Appl. Catal. B: Environ. 106 (2011) 1.

Google Scholar

[14] F. Grasset, G. Starukh, L. Spanhel, S. Ababou-Girard, D. S. Su and A. Klein, Adv. Mater. 17 (2005) 294.

DOI: 10.1002/adma.200400031

Google Scholar

[15] F. Grasset, L. Spanhel and S. Ababou-Girard: Superlattice. Microst. 38 (2005) 300.

Google Scholar

[16] T. Hisatomi, K. Teramura, J. Kubota and K. Domen: Bull. Chem. Soc. Jpn. 81 (2008) 1647.

Google Scholar

[17] J. G. Hou, R. Cao, S. Q. Jiao, H. M. Zhu and R. V. Kumar: Appl. Catal. B: Environ. 104 (2011) 399.

Google Scholar

[18] X. Q. Zhu, J. L. Zhang and F. Chen, Chemosphere 78 (2010) 1350.

Google Scholar

[19] J. G. Hou, S. Q. Jiao, H. M. Zhu and R. V. Kumar: J. Solid State Chem. 184 (2011) 154.

Google Scholar

[20] H. F. Cheng, B. B. Huang, Y. Dai, X. Y. Qin, X. Y. Zhang, Z. Y. Wang and M. H. Jiang, J. Solid State Chem. 182 (2009) 2274.

Google Scholar

[21] W. F. Yao, X. H. Xu, H. Wang, J. T. Zhou, X. N. Yang, Y. Zhang, S. X. Shang and B. B. Huang: Appl. Catal. B: Environ. 52 (2004) 109.

Google Scholar

[22] C. J. Xiao, C. Q. Jin and X. H. Wang, J. Mater. Process. Technol. 209 (2009) (2033).

Google Scholar

[23] W. F. Yao, X. H. Xu and H. Wang, Appl. Catal. B: Environ. 52 (2004) 109.

Google Scholar

[24] X. Lin, Q. F. Guan, H. B. Li, C. H. Ba, D. D. Wang and F. J. Meng: Chinese J. Inorg. Chem. 28 (2012) 2248.

Google Scholar

[25] A. Kudo, K. Ueda, H. Kato and I. Mikami, Catal. Lett. 53 (1998) 229.

Google Scholar

[26] L. Zhou, W. Wang, S. Liu, L. Zhang, H. Xu and W. Zhu: J. Mol. Catal. A: Chem. 252 (2006) 120.

Google Scholar

[27] S. Tokunaga, H. Kato and A. Kudo: Chem. Mater. 13 (2001) 4624.

Google Scholar

[28] J. B. Liu, H. Wang, S. Wang and H. Yan: Mater. Sci. Eng. B 104 (2003) 36.

Google Scholar

[29] X. Lin, P. Lv, Q. F. Guan, H. B. Li, H. J. Zhai and C. B. Liu: Appl. Surf. Sci. 258 (2012) 7146.

Google Scholar

[30] X. Lin, Q. F. Guan, H. B. Li, H. J. Li, C. H. Ba and H. D. Deng: Acta Phys. -Chem. Sin. 28 (2012) 1481.

Google Scholar

[31] X. Lin, P. Lv, Q. F. Guan, H. B. Li, H. J. Li, J. Cai and Y. Zou: Acta Phys. -Chem. Sin. 28 (2012) (1978).

Google Scholar

[32] Y. D. Hou, X. C. Wang, L. Wu, X. F. Chen, Z. X. Ding, X. X. Wang and X. Z. Fu: Chemosphere 72 (2008) 414.

Google Scholar

[33] M. S. Zhang, J. Yu, W. C. Chen and Z. Yin: Prog. Cryst. Growth Charact. Mater. (2000) 33.

Google Scholar

[34] Q. Z. Wang, N. An, R. J. Mu, H. Liu, J. Yuan, J. W. Shi amd W. F. Shangguan: J. Alloys Compd. 522 (2012) 19.

Google Scholar

[35] H. Liu, J. Yuan, Z. Jiang, W. F. Shangguan, H. Einaga and Y. Teraoka: J. Solid State Chem. 186 (2012) 70.

Google Scholar

[36] D. Xu, A. M. Gao and W. L. Deng: Acta Phys. -Chim. Sin. 24 (2008) 1219.

Google Scholar