Global-Scale Atmospheric Change with the Tibetan Plateau Uplift in a Coupled Climate Model (CESM)

Article Preview

Abstract:

Large topography can affect the global climate change significantly. Many studies have revealed that the altitude of the Tibetan Plateau (TP) is related to the Asian regional climate. In order to find how the global-scale atmospheric circulation changes in response to the TP uplift in summer, a fully coupled model, Community Earth System Model (CESM), was used in this paper. Four experiments were run with the altitude of TP set to 25%, 50%, 75%, and 100% of the modern height, respectively (referred to as TP25, TP50, TP75, TP100 experiments). The results show that the uplift of the TP causes the change of the subtropical circulation over the northern hemisphere as well as the southern hemisphere. In the TP25 experiment, the South Asian High (SAH) at the 150mb is comparatively weak, and with the elevated surface heating, the vertical motion in the middle troposphere strengthens greatly. The ascending air over the TP leads to the forming and sustaining of the SAH, a dominate subsystem of the upper troposphere. The perturbation of the SAH propagates in the upper troposphere and stimulates stronger planetary waves on the globe and it also affects the circulation in the low level atmosphere. The subtropical highs over seal level strengthen over the Southern Ocean as well as the North Pacific and Atlantic Oceans. Furthermore, the westerlies around the Antarctica become stronger with the increasing altitude of the TP. This is meaningful that the stronger westerlies may be a forcing to accelerate the Cenozoic global cooling during the geological history.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 962-965)

Pages:

1392-1399

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Z. An, J.E. Kutzbach, W.L. Prell and S.C. Porter: Nature Vol. 411 (2001), p.62.

Google Scholar

[2] J.E. Kutzbach, P.J. Guetter, W.F. Ruddiman and W.L. Prell: J. Geophys. Res. Vol. 94 (1989), p.18393.

Google Scholar

[3] X. Liu, Z.Y. Yin: Palaeogeogr. Palaeocl. Vol. 183 (2002), p.223.

Google Scholar

[4] J.H. Song, H.S. Kang, Y.H. Byun and S.Y. Hong: Int. J. Climatol. Vol. 30 (2010), p.743.

Google Scholar

[5] P. Queney: Bull. Amer. Meteor. Soc. Vol. 29 (1948), p.16.

Google Scholar

[6] T.C. Yeh: Tellus Vol. 2 (1950), p.173.

Google Scholar

[7] T.Z. Yeh, S.W. Lo and P.C. Chu: Acta Metor. Sinica Vol. 28 (1957), p.108 (in Chinese).

Google Scholar

[8] H. Flohn: J. Meteor. Soc. Jpn. Vol. 75 (1957), p.180.

Google Scholar

[9] Staff Members of the Section of Synoptic and Dynamic Meteorology: Tellus Vol. 10 (1957), p.58.

Google Scholar

[10] D.G. Hahn and S. Manabe: J. Atmos. Sci. Vol. 32(1975), p.1515.

Google Scholar

[11] T.Z. Yeh and Y.X. Gao: Meteorology of the Qinghai-Xizang (Tibet) Plateau (Science Press, Beijing 1979, in Chinese).

Google Scholar

[12] J.E. Kutzbach: Mon. Wea. Rev. Vol. 98 (1970), p.708.

Google Scholar

[13] P. Zhao and L.X. Chen: Adv. Atmos. Sci. Vol. 18 (2001), p.106.

Google Scholar

[14] A. Kitoh: J. Clim. Vol. 17 (2004), p.783.

Google Scholar

[15] A.M. Duan and G.X. Wu: Clim. Dynam. 24 (2005), p.793.

Google Scholar

[16] T. Sato and F. Kimura: Mon. Wea. Rev. Vol. 135 (2007), p. (2006).

Google Scholar

[17] W.R. Boos and Z.M. Kuang: Nature Vol. 463 (2010), p.218.

Google Scholar

[18] P. Molnar, W.R. Boos and D.S. Battisti: Annu. Rev. Earth Planet. Sci. Vol. 38 (2010), p.77.

Google Scholar

[19] G. Wu, Y. Liu, B. He, Q. Bao, A. Duan and F.F. Jin: Sci. Rep. Vol. 2 (2012), 404.

Google Scholar

[20] M. Yanai and G. Wu, in: The Asian Monsoon, B. Wang, Ed., Chapter, 13, Springer Berlin Heidelberg (2006).

Google Scholar

[21] M. Vertenstein, T. Craig, A. Middleton, D. Feddema and C. Fischer: CESM1. 0. 3 User's Guide. NCAR (2011).

Google Scholar

[22] W.D. Collins, C.M. Bitz, M.L. Blackmon, M.L. Blackmon, G.B. Bonan, C.S. Bretherton, J.A. Carton, P. Chang, S.C. Doney, J.J. Hack, T.B. Henderson, J.T. Kiehl, W.G. Large, D.S. Macenna, B.D. Santer and R.D. Smith: J. Clim. Vol. 19 (2006), p.2122.

DOI: 10.1175/jcli3761.1

Google Scholar

[23] R. Smith and P. Gent: Reference manual for the Parallel Ocean Program (POP) ocean component of the Community Climate System Model (CCSM2. 0 and 3. 0). LAUR-02-2484. Los Alamos National Laboratory, Los Alamos (2004).

Google Scholar

[24] B.P. Briegleb, C.M. Bitz, E.C. Hunke, W.H. Lipscomb, M.M. Holland, J.L. Schramm and R.E. Moritz: Scientific description of the sea ice component in the Community Climate System Model, version 3. NCAR Tech Note. NCAAR/TN-463+STR (2004).

Google Scholar

[25] R.E. Dickinson, K.W. Oleson, G. Bonan, F. Hoffman, P. Thornton, M. Vertenstein, Z.L. Yang and X. Zeng: J. Clim. Vol. 19 (2006), p.2302.

Google Scholar

[26] Collins, W.D., Rasch, P.J., Boville, B.A., Hack, J. J, McCaa, J.R., Williamson, D.L., Kiehl, J.T., Briegleb, B., Bitz, C., Lin, S.J., Zhang, M., Dai, Y., 2004. Description of the NCAR Community Atmosphere Model (CAM 3. 0), Technical Report NCAR/TN-464+STR, National Center for Atmospheric Research, Boulder, Colorado, 210 pp.

DOI: 10.1175/jcli3760.1

Google Scholar

[27] R.B. Mason and C.E. Anderson: Mon. Wea. Rev. Vol. 91 (1963), p.3.

Google Scholar

[28] H. Luo and M. Yanai: Mon. Wea. Rev. Vol. 112 (1984), p.966.

Google Scholar

[29] P. Molnar, P. England and J. Martinod: Rev. Geophys. Vol. 31 (1993), 357.

Google Scholar

[30] P.J. Webster, V.O. Magana, T.N. Palmer, J. Shukla, R.A. Tomas and M.Y. Yasunari: J. Geophys. Res. Vol. 103 (1998), p.14451.

Google Scholar

[31] P. Zhao, X. Zhang, Y. Li and J. Chen: Atmos. Res. Vol. 94 (2009), p.45.

Google Scholar

[32] G. Wu: J. Atmos. Sci. Vol. 41 (1984), p.2456.

Google Scholar

[33] K.E. Trenberth and S. C. Chen: J. Atmos. Sci. Vol. 43 (1988), p.2934.

Google Scholar

[34] M. Abe, A. Kitoh and T. Yasunari: J. Meteorol. Soc. Jpn. Vol. 81 (2003), p.909.

Google Scholar

[35] Y. Wang, X. Xu, A.R. Lupo, P. Li and Z. Yin: J. Geophys. Res. Vol. 116 (2011), p. D19108.

Google Scholar

[36] G. Wu, Y. Liu: Geophys. Res. Lett. Vol. 30 (2003), p.1201.

Google Scholar