Linkage of the South Asian High to the Southern Annular Mode during the Boreal Summer

Article Preview

Abstract:

The linkage of the South Asian High (SAH) to the southern annular mode (SAM) during the boreal summer is addressed. The results show that the SAH correlated well with the Southern Hemispheric subtropical high (SSH) and SAM, which exhibits that their recent positive trends are associated with each other. During the positive SAH anomalies years, roughly speaking, the sea level pressure (SLP) and the zonal surface wind (u10) are analogous to that of the positive SAM phase, but they also show an anomalous zonal-wave-3-like (ZW3-like) pattern over the mid latitudes. The surface temperature (ST) variations are not similar to the SAM. Nevertheless, these changes are related with the anomalous cyclones and meridional surface wind (v10). The relationship between the SAH and SAM is also a manifestation of the interhemispheric interaction, and this study contributes to the understanding of the global change.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 962-965)

Pages:

1404-1409

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Ye, D and Y. Gao: Meteorology of the Qinghai-Xizang (Tibetan) Plateau (Science Press, Beijing 1979).

Google Scholar

[2] Li, C. and M. Yanai: J. Climate Vol. 9 (1996), p.358.

Google Scholar

[3] H. Flohn: J. Meteor. Soc. Jpn. Vol. 75 (1957), p.180.

Google Scholar

[4] B. Liu, G. Wu, J. Mao and J He: J. Climate Vol. 26 (2013), p.2976.

Google Scholar

[5] G. Huang, X. Qu and K. Hu: Adv. Atmos. Sci. Vol. 28 (2011), p.421.

Google Scholar

[6] W. Wei, R. Zhang, M. Wen, X. Rong and T. Li: Clim. Dynam. Publish online (2013).

Google Scholar

[7] L. Zhang and X. Zhi: First IEEE International Conference on Information Science and Engineering (2009), p.4671.

Google Scholar

[8] L. Zhang and X. Zhi, in Atmospheric Science, edited by J. H. Oh, volumn 16 of Advances in Geosciences, p.93, World Scientific Publishing Co. Pte. Ltd. (2010).

Google Scholar

[9] X. Jiang, Y. Li, Y. Song and R. Wu: Meteorol. Atmos. Phys. Vol. 113 (2011), p.171.

Google Scholar

[10] P. Zhang, Y. Song and E.K. Vernon: Adv. Atmos. Sci. Vol. 22 (2005), p.915.

Google Scholar

[11] P. Zhao, X. Zhang, Y. Li and J. Chen: Atmos. Res. Vol. 94 (2009), p.45.

Google Scholar

[12] D. Gong and S. Wang: Geophys. Res. Lett. Vol. 26 (1999), p.459.

Google Scholar

[13] L.M.V. Carvalho, C. Jones and T. Ambrizzi: J. Climate Vol. 18 (2005), p.702.

Google Scholar

[14] R.L. Fogt, D.H. Bromwich and K. M. Hines: Clim. Dynam. Vol. 36 (2010), p.1555.

Google Scholar

[15] D. Thompson and J. Wallace: J. Climate Vol. 13 (2000), p.1000.

Google Scholar

[16] D. Thompson, J. Wallace and G. Hegerle: J. Climate Vol. 13 (2000), P. 1018.

Google Scholar

[17] K. Fan and H. Wang: Sci. China: Ser. D Vol. 49 (2006), p.554.

Google Scholar

[18] S. Nan and J. Li: Geophys. Res. Lett. Vol. 30 (2003), p.2266.

Google Scholar

[19] S.M. Uppala, P.W. KÅllberg, A.J. Simmons, U. Andrae, V. Da Costa Bechtold, M. Fiorino, J.K. Gibson, J. Haseler, A. Hernandez, G.A. Kelly, X. Li, K. Onogi, S. Saarinen, N. Sokka, R.P. Allan, E. Andersson, K. Arpe, M. A. Balmaseda, A.C.M. Beljaars, L. Van De Berg, J. Bidlot, N. Bormann, S. Caires, F. Chevallier, A. Dethof, M. Dragosavac, M. Fisher, M. Fuentes, S. Hagemann, E. Hólm, B. J. Hoskins, L. Isaksen, P.A.E. M. Janssen, R. Jenne, A.P. Mcnally, J.F. Mahfouf, J.J. Morcrette, N.A. Rayner, R.W. Saunders, P. Simon, A. Sterl, K.E. Trenberth, A. Untch, D. Vasiljevic, P. Viterbo and J. Woollen: Quart. J. R. Meteor. Soc. Vol. 131 (2005).

DOI: 10.1256/qj.04.176

Google Scholar

[20] X. Liu, Q. Zhu and P. Guo: Adv. Atmos. Sci. Vol. 17 (2000), p.129.

Google Scholar

[21] Y. Qian, Q. Zhang, Y. Yao and X. zhang: Adv. Atmos. Sci. Vol. 19 (2002), p.821.

Google Scholar